On measurements of Λ transverse polarization in
$p+p$ interactions within NA61/SHINE at the CERN SPS

Yehor Bondar

Jan Kochanowski University of Kielce, Poland NA61/SHINE Collaboration

21st Zimányi School Winter Workshop on Heavy Ion Physics
Budapest, Hungary 06.12.2021

Outline

- Motivation
- Polarization bias due to Λ selection cuts and limited detector acceptance
- Polarization bias due to magnetic field
- Summary

Λ hyperon particle

- Discovered in 1950
- $\Lambda=u d s$
- $J^{P}=\frac{1}{2}^{+}$
- Mass: $m=1.116 \mathrm{GeV} / \mathrm{c}$
- Lifetime: $\tau=2.6 \cdot 10^{-10} \mathrm{~s}$, $c \tau=7.89 \mathrm{~cm}$.
- Main decay mode: $p \pi^{-}(\mathrm{BR}=63.9 \%)$

In the weak decay $\Lambda \rightarrow p+\pi^{-}$, daughter proton distribution function has the following form:

$$
\frac{d N}{d \Omega}=\frac{1}{4 \pi}\left(1+\alpha \cos \theta^{*}\right),
$$

where θ^{*} is the angle between daughter proton momentum and Λ spin vector in hyperon rest frame, and $\alpha=0.732 \pm 0.014$.

[^0]
Global and transverse Λ polarization

Global polarization (2017 STAR paper in Nature)

Transverse polarization (since 1975)

Nature 548, 62-65 (2017); Int. J. Mod. Phys. A 1990.05:1197-1266.
Pics: BNL, Yu. Naryshkin.

World p-p and p-A transverse polarization data

Λ polarization in the p-p interaction as a function of transverse momenta p_{\perp} measured at the CERN Intersecting Storage Rings (1979).

0

The Λ transverse polarization measured by ATLAS (pp), HERA-B (pC, pW), NA48 and E799 (pBe), and M2 (pN) experiments.

[^1]
Motivation

- None of the theoretical models describes well all experimental data on Λ polarization, its dependence on the transverse momentum of the hyperon and on the Feynman variable x_{F}
- These models are unsuccessful to predict polarizations for all hyperons and antihyperons

NA61/SHINE experimental setup for $\mathrm{p}+\mathrm{p}$ (2009-2011)
$15 \mathrm{M} \mathrm{p}+\mathrm{p}$ events were recorded

Transverse polarization definition and calculation

Production plane coordinate system:

$$
\begin{aligned}
& \hat{n}_{x}=\frac{\vec{p}_{\text {beam }} \times \vec{p}_{\Lambda}}{\left|\vec{p}_{\text {beam }} \times \vec{p}_{\Lambda}\right|} \\
& \hat{n}_{z}=\frac{\vec{p}_{\Lambda}}{\left|\vec{p}_{\Lambda}\right|} \\
& \hat{n}_{y}=\hat{n}_{z} \times \hat{n}_{x}
\end{aligned}
$$

- Rotate from NA61 frame to Production plane coordinate system.
$\vec{p}^{\prime}=\left(\hat{n}_{x} \cdot \vec{p}_{p}, \hat{n}_{y} \cdot \vec{p}_{p}, \hat{n}_{z} \cdot \vec{p}_{p}\right)$
$\vec{p}_{\Lambda}^{\prime}=\left(0,0,\left|\vec{p}_{\Lambda}\right|\right)$
- boost along \hat{n}_{z} to Λ rest frame: $\beta=\left|\vec{p}_{\Lambda}\right| / E_{\Lambda}, \gamma=\left(1-\beta^{2}\right)^{-1 / 2}$. proton momentum: $\vec{p}_{p}^{*}=\left(p_{x}^{\prime}, p_{y}^{\prime}, \gamma\left(p_{z}^{\prime}-\beta \sqrt{\vec{p}^{\prime 2}+m_{p}^{2}}\right)\right)$

Transverse polarization definition and calculation

- Calculate cosine of angles between \vec{p}_{p}^{*} and axes:

$$
\cos \theta_{i}^{*}=\frac{p_{p i}^{*}}{\left|\vec{p}_{p}^{*}\right|}, i=x, y, z
$$

- Fit distribution of the $\cos \theta_{i}^{*}$ to the theoretical prediction and extract P_{i} - projection of polarization.

$$
f\left(\cos \theta_{i}^{*}\right)=\frac{1+\alpha P_{i} \cos \theta_{i}^{*}}{2}
$$

where $\alpha=0.732 \pm 0.014$.
According to parity conservation in the strong interaction, $P_{y} \equiv P_{z} \equiv 0$ if the incident proton beam is unpolarized.
Thus the measurements of P_{y} and P_{z} are usually used for checking the systematic uncertanties.

Monte Carlo analysis

- 10^{8} events of inelastic $\mathrm{p}+\mathrm{p}$ simulated within EPOS \& Geant3 at $158 \mathrm{GeV} / c$ beam momentum
- In Geant3, $P_{x} \equiv 0$: no Λ polarization.
- 10^{7} 's with $p \pi^{-}$channel
- Crosscheck - distributions of $\cos \theta_{i}$:

Bias due to Λ selection cuts and limited detector acceptance

Selection cuts ${ }^{(*)}$ were applied:

- Z difference between Λ vertex and primary vertex $\Delta z=z_{\Lambda}-z_{P V}$:

$$
\left\{\begin{array}{l}
\Delta z>10 \mathrm{~cm}, y<0.25 \\
\Delta z>15 \mathrm{~cm}, 0.25<y<0.75 \\
\Delta z>40 \mathrm{~cm}, 0.75<y<1.25 \\
\Delta z>60 \mathrm{~cm}, y>1.25
\end{array}\right.
$$ both p and π^{-}tracks

$P_{x}=(-0.08 \pm 1.5) \cdot 10^{-3}$

$P_{y}=(-7.1 \pm 0.2) \cdot 10^{-2}$

$P_{z}=(-4.1 \pm 0.2) \cdot 10^{-2}$
${ }^{(*)}$ Eur. Phys. J. C (2016) 76: 198

Bias due to magnetic field
Strong magnetic field and its gradient! How does it influence on polarization of Λ ?

Λ precession: theory

Covariant equation of spin motion:

$$
\frac{d S^{\alpha}}{d \tau}=\mu\left[F^{\alpha \beta} S_{\beta}+u^{\alpha}\left(S_{\lambda} F^{\lambda \mu} u_{\mu}\right)\right]-u^{\alpha}\left(S_{\lambda} \frac{d u^{\lambda}}{d \tau}\right)
$$

S^{α} - spin 4-vector, u^{α} - velocity 4 -vector, μ - particle's magnetic moment.
Last term can be neglected (no force on Λ, see backup slide).
The equation of motion of the spin vector \vec{S} in Λ rest frame is

$$
\frac{d \vec{S}}{d \tau}=\frac{\mu_{\Lambda} \mu_{N}}{\hbar}\left[\vec{S} \times \overrightarrow{B^{\prime}}\right]
$$

where μ_{N} - nuclear magneton, $\mu_{\Lambda}=-0.613[\mathrm{PDG}]$ - Lambda magnetic moment in μ_{N} units, $\overrightarrow{B^{\prime}}$ - magnetic field in rest frame in terms of lab magnetic field \vec{B} (neglect electric field in Lab frame):

$$
\overrightarrow{B^{\prime}}=\gamma \vec{B}-(\gamma-1)(\vec{B} \cdot \hat{p}) \hat{p}, \quad \hat{p}=\overrightarrow{p_{\Lambda}} /\left|\overrightarrow{p_{\Lambda}}\right|
$$

Λ precession: spin equation application

Considering $d z=\frac{p_{z}}{m c} c d \tau$, The equation of motion of the spin vector \vec{S} in Λ rest frame takes the form:

$$
\frac{d \vec{S}}{d z}=\frac{\mu_{\Lambda} \mu_{N}}{c \hbar\left(p_{z} / m c\right)}\left[\vec{S} \times \overrightarrow{B^{\prime}}(x, y, z)\right]
$$

Integrate with step $\Delta z=1 \mathrm{~cm}$ using NA61/SHINE magnetic field. Initial condition: generate random 1000 spin vectors \vec{S} uniformly distributed on unit sphere +100 spin vectors \vec{S} uniformly distributed on XZ plane.
Among these 1100 vectors, choose one with maximum angle change, $\phi_{\text {max }}=\max \left(\angle\left(\vec{S}_{\text {init }}, \vec{S}_{\text {final }}\right)\right)$.
$\phi_{\max }$ dependence on $z_{\text {decay }}$

Magnetic field impact on Λ polarization estimation

How does magnetic field impact on Λ polarization?

To estimate such effect, for every Λ,

- Assign polarization vector \vec{S} uniformly distributed value,
- Propagate it in magnetic field until decay,
- Project \vec{S} on $\hat{n}_{x}, \hat{n}_{y}, \hat{n}_{z}$ and fit their distributions.

Distribution of $\vec{S}_{\text {init }}$ (before precession):

$$
P_{x}=(0.8 \pm 1) \times 10^{-3}
$$

$$
P_{y}=(-0.2 \pm 1) \times 10^{-3}
$$

$$
P_{z}=(1.2 \pm 1) \times 10^{-3}
$$

Distribution of $\vec{S}_{\text {final }}$ (after precession):

$$
P_{y}=(0.2 \pm 1) \times 10^{-3}
$$

$$
P_{z}=(1.3 \pm 1) \times 10^{-3}
$$

$$
P_{x}=(0.9 \pm 1) \times 10^{-3}
$$

Summary

- NA61/SHINE has a large potential to study Λ transverse polarization in $\mathrm{p}-\mathrm{p}$ and $\mathrm{p}-\mathrm{A}$ collisions.
- Geometrical acceptance significantly biases the result and it should be taken into account via MC corrections.
- Magnetic field impact on Λ polarization due to precession is smaller than detector acceptance-based polarization bias.
- To limit possible precession-based bias, $\Delta z<1 \mathrm{~m}\left(\phi_{\max }<0.05\right)$ cut can be used.

Next step: proceed to analyse real p-p data at $158 \mathrm{GeV} / c$ beam momentum.

Thank you!

Backup Slides

Gradient force

Covariant equation of spin motion:

$$
\frac{d S^{\alpha}}{d \tau}=\mu\left[F^{\alpha \beta} S_{\beta}+u^{\alpha}\left(S_{\lambda} F^{\lambda \mu} u_{\mu}\right)\right]-u^{\alpha}\left(S_{\lambda} \frac{d u^{\lambda}}{d \tau}\right)
$$

Estimate impact of force $\vec{F}=\vec{\nabla}(\vec{m} \cdot \vec{B})=\sum_{k} m_{k} \vec{\nabla} B_{k}$.
In lab frame, magnetic field change by $\Delta B_{y}=1.5 \mathbf{T}$
over distance along z axis $L=1.5 \mathbf{m}$.
Due to dime dilation, $L=\gamma c \tau, \gamma \approx 19, p_{\Lambda} \approx 21 \mathbf{G e V} / \mathbf{c}$, where τ is Λ mean lifetime.
Nuclear magneton $\mu_{N}=3 \cdot 10^{-8} \mathbf{e V} / \mathbf{T}$,
Λ magnetic moment $|\vec{m}| \approx 0.6 \mu_{N}$.
In rest frame, the momentum change: $\Delta \vec{p}=\vec{F} \cdot \tau=m_{y} \vec{\nabla} B_{y} \tau$.
Even if \vec{m} aligned with y axis,

$$
\Delta p_{z}=0.6 \mu_{N} \frac{\gamma \Delta B_{y}}{L / \gamma} \tau \approx 5 \cdot 10^{-7} \mathbf{e V} / \mathbf{c}
$$

Speed: $v / c \approx 5 \cdot 10^{-16}$.
Max spin vector change: $|\Delta \vec{S}| \sim(v / c)^{2} \sim 10^{-31}$.

x_{F} distribution

The Λ transverse polarization measured by ATLAS compared

x_{F} distribution to measurements from lower center-of-mass energy experiments.

[^0]: PDG 2020

[^1]: Apostolos D. Panagiotou, Int. J. Mod. Phys. A 1990.05:1197-1266.
 ATLAS Collaboration, Phys. Rev. D 91, 032004 (2015).

