On measurements of Λ transverse polarization in p+p interactions within NA61/SHINE at the CERN SPS

Yehor Bondar

Jan Kochanowski University of Kielce, Poland NA61/SHINE Collaboration

21st Zimányi School Winter Workshop on Heavy Ion Physics Budapest, Hungary 06.12.2021

Outline

► Motivation

- \blacktriangleright Polarization bias due to Λ selection cuts and limited detector acceptance
- ▶ Polarization bias due to magnetic field
- ► Summary

Λ hyperon particle

- ▶ Discovered in 1950
- $\blacktriangleright \Lambda = uds$
- $\blacktriangleright J^P = \frac{1}{2}^+$
- ▶ Mass: m = 1.116 GeV/c
- Lifetime: $\tau = 2.6 \cdot 10^{-10}$ s, $c\tau = 7.89$ cm.
- ► Main decay mode: $p\pi^-$ (BR = 63.9%)

In the weak decay $\Lambda \rightarrow p + \pi^-$, daughter proton distribution function has the following form:

$$\frac{dN}{d\Omega} = \frac{1}{4\pi} (1 + \alpha \cos \theta^*),$$

where θ^* is the angle between daughter proton momentum and Λ spin vector in hyperon rest frame, and $\alpha = 0.732 \pm 0.014$.

PDG 2020

Global and transverse Λ polarization

Nature 548, 62-65 (2017); Int. J. Mod. Phys. A 1990.05:1197-1266.

World p-p and p-A transverse polarization data

A polarization in the p-p interaction as a function of transverse momenta p_{\perp} measured at the CERN Intersecting Storage Rings (1979). The Λ transverse polarization measured by ATLAS (pp), HERA-B (pC, pW), NA48 and E799 (pBe), and M2 (pN) experiments.

Apostolos D. Panagiotou, Int. J. Mod. Phys. A 1990.05:1197-1266. ATLAS Collaboration, Phys. Rev. D 91, 032004 (2015).

Motivation

- None of the theoretical models describes well all experimental data on Λ polarization, its dependence on the transverse momentum of the hyperon and on the Feynman variable x_F
- These models are unsuccessful to predict polarizations for all hyperons and antihyperons

NA61/SHINE experimental setup for p+p (2009–2011)

15M p+p events were recorded

Transverse polarization definition and calculation

- ► Rotate from NA61 frame to Production plane coordinate system. $\vec{p}' = (\hat{n}_x \cdot \vec{p}_p, \hat{n}_y \cdot \vec{p}_p, \hat{n}_z \cdot \vec{p}_p)$ $\vec{p}'_{\Lambda} = (0, 0, |\vec{p}_{\Lambda}|)$
- ► boost along \hat{n}_z to Λ rest frame: $\beta = |\vec{p}_\Lambda|/E_\Lambda, \gamma = (1 \beta^2)^{-1/2}$. proton momentum: $\vec{p}_p^* = (p'_x, p'_y, \gamma(p'_z - \beta\sqrt{\vec{p'}^2 + m_p^2}))$

Transverse polarization definition and calculation

► Calculate cosine of angles between \vec{p}_p^* and axes:

$$\cos \theta_i^* = \frac{p_{p\,i}^*}{|\vec{p_p}|}, \ i = x, y, z$$

Fit distribution of the $\cos \theta_i^*$ to the theoretical prediction and extract P_i – projection of polarization.

$$f(\cos\theta_i^*) = \frac{1 + \alpha P_i \cos\theta_i^*}{2},$$

where $\alpha = 0.732 \pm 0.014$.

According to parity conservation in the strong interaction, $P_y \equiv P_z \equiv 0$ if the incident proton beam is unpolarized.

Thus the measurements of P_y and P_z are usually used for checking the systematic uncertanties.

Monte Carlo analysis

- ▶ 10⁸ events of inelastic p+p simulated within EPOS & Geant3 at 158 GeV/c beam momentum
- ▶ In Geant3, $P_x \equiv 0$: no Λ polarization.
- ► 10⁷ A's with $p\pi^-$ channel
- Crosscheck distributions of $\cos \theta_i$:

Phys. Rev. C 74 044902 (2006); CERN Program Library Long Writeup W5013 (1993)

Bias due to Λ selection cuts and limited detector acceptance

Selection $cuts^{(*)}$ were applied:

- ► Z difference between Λ vertex and primary vertex $\Delta z = z_{\Lambda} - z_{PV}$:
- Number of points in VTPC's >10 for both p and π⁻ tracks

 $\begin{cases} \Delta z > 10 \text{ cm}, \ y < 0.25 \\ \Delta z > 15 \text{ cm}, \ 0.25 < y < 0.75 \\ \Delta z > 40 \text{ cm}, \ 0.75 < y < 1.25 \\ \Delta z > 60 \text{ cm}, \ y > 1.25 \end{cases}$

^(*)Eur. Phys. J. C (2016) 76: 198

Bias due to magnetic field

Strong magnetic field and its gradient! How does it influence on polarization of Λ ?

Λ precession: theory

Covariant equation of spin motion:

$$\frac{dS^{\alpha}}{d\tau} = \mu \left[F^{\alpha\beta} S_{\beta} + u^{\alpha} \left(S_{\lambda} F^{\lambda\mu} u_{\mu} \right) \right] - u^{\alpha} \left(S_{\lambda} \frac{du^{\lambda}}{d\tau} \right),$$

 S^{α} - spin 4-vector, u^{α} - velocity 4-vector, μ - particle's magnetic moment.

Last term can be neglected (no force on Λ , see backup slide). The equation of motion of the spin vector \vec{S} in Λ rest frame is

$$\frac{d\vec{S}}{d\tau} = \frac{\mu_{\Lambda}\mu_{N}}{\hbar} \left[\vec{S} \times \vec{B'}\right]$$

where μ_N - nuclear magneton, $\mu_{\Lambda} = -0.613$ [PDG] - Lambda magnetic moment in μ_N units, $\vec{B'}$ - magnetic field in rest frame in terms of lab magnetic field \vec{B} (neglect electric field in Lab frame):

$$\vec{B'} = \gamma \vec{B} - (\gamma - 1)(\vec{B} \cdot \hat{p})\hat{p}, \qquad \hat{p} = \vec{p_{\Lambda}}/|\vec{p_{\Lambda}}|.$$

Λ precession: spin equation application

Considering $dz = \frac{p_z}{mc} c d\tau$, The equation of motion of the spin vector \vec{S} in Λ rest frame takes the form:

$$\frac{d\vec{S}}{dz} = \frac{\mu_{\Lambda}\mu_{N}}{c\hbar(p_{z}/mc)} \left[\vec{S}\times\vec{B'}(x,y,z)\right]$$

Integrate with step $\Delta z = 1$ cm using NA61/SHINE magnetic field. Initial condition: generate random 1000 spin vectors \vec{S} uniformly distributed on unit sphere + 100 spin vectors \vec{S} uniformly distributed on XZ plane.

Among these 1100 vectors, choose one with maximum angle change, $\phi_{\max} = \max(\angle(\vec{S}_{init}, \vec{S}_{final})).$

ϕ_{max} dependence on z_{decay}

Magnetic field impact on Λ polarization estimation

How does magnetic field impact on Λ polarization?

To estimate such effect, for every Λ ,

- ► Assign polarization vector \vec{S} uniformly distributed value,
- ▶ Propagate it in magnetic field until decay,
- ▶ Project \vec{S} on \hat{n}_x , \hat{n}_y , \hat{n}_z and fit their distributions.

Distribution of \vec{S}_{init} (before precession):

Despite ϕ_{max} is significant, polarization bias is ~ 10⁻⁴ due to averaging over all As.

Summary

- NA61/SHINE has a large potential to study Λ transverse polarization in p-p and p-A collisions.
- Geometrical acceptance significantly biases the result and it should be taken into account via MC corrections.
- Magnetic field impact on Λ polarization due to precession is smaller than detector acceptance-based polarization bias.
- ► To limit possible precession-based bias, $\Delta z < 1 \text{ m} (\phi_{\text{max}} < 0.05)$ cut can be used.

Next step: proceed to analyse real p-p data at 158 ${\rm GeV}/c$ beam momentum.

Thank you!

Backup Slides

Gradient force

Covariant equation of spin motion:

$$\frac{dS^{\alpha}}{d\tau} = \mu \left[F^{\alpha\beta} S_{\beta} + u^{\alpha} \left(S_{\lambda} F^{\lambda\mu} u_{\mu} \right) \right] - u^{\alpha} \left(S_{\lambda} \frac{du^{\lambda}}{d\tau} \right)$$

Estimate impact of force $\vec{F} = \vec{\nabla}(\vec{m} \cdot \vec{B}) = \sum_k m_k \vec{\nabla} B_k$. In lab frame, magnetic field change by $\Delta B_y = 1.5 \text{ T}$ over distance along z axis L = 1.5 m. Due to dime dilation, $L = \gamma c \tau$, $\gamma \approx 19$, $p_{\Lambda} \approx 21 \text{ GeV/c}$, where τ is Λ mean lifetime. Nuclear magneton $\mu_N = 3 \cdot 10^{-8} \text{ eV/T}$, Λ magnetic moment $|\vec{m}| \approx 0.6 \mu_N$. In rest frame, the momentum change: $\Delta \vec{p} = \vec{F} \cdot \tau = m_y \vec{\nabla} B_y \tau$. Even if \vec{m} aligned with y axis,

$$\Delta p_z = 0.6 \mu_N \frac{\gamma \Delta B_y}{L/\gamma} \tau \approx 5 \cdot 10^{-7} \ \mathbf{eV/c}$$

Speed: $v/c \approx 5 \cdot 10^{-16}$. Max spin vector change: $\left|\Delta \vec{S}\right| \sim (v/c)^2 \sim 10^{-31}$.

x_F distribution

The Λ transverse polarization measured by ATLAS compared to measurements from lower center-of-mass energy experiments.

