J/ψ-in-jets with CMS

Matthew Nguyen
LLR-Ecole Polytechnique
Zimanyi Winter School
December 6th, 2021

Hot nuclear matter effects

Quarkonium dissociation

Data from CMS, PRL 109, 222301 Cartoon from Mocsy, EPJC 61 (2009) 705

Jet quenching

- Two phenomena closely tied to QGP formation in heavy-ion collisions
- First observed at the SPS & RHIC; intensely studied at the LHC
- No obvious connection between these phenomena, a priori

Quarkonium production puzzle

- Determination of nuclear effects requires accurate description of baseline from pp
- Heavy-quark pair x-section calculable, but not transition to color-singlet bound state
- Vast literature w/ many different approaches to hadronization, e.g., CEM, NRQCD etc.

- Models have trouble simultaneously describing p_{T} -differential x-section & polarization
- Illustrative example: recent results from Improved Color Evaporation Model (ICEM)

A new observable: J/ψ-in-jets

- Not a correlation of J/ψ & jets, rather clustering of J/ψ *into* jets

 the decay muons are replaced w/ J/ψ before clustering
- Observable is $z = p_T (J/\psi) / p_T (jet)$

- J/ψ in pp data fragment softer than models, i.e., more jet activity
- At very low z, contribution from double parton scattering

Quarkonium puzzle resolved?

Cartoon by B. Diab

- Resummed calculations (NLL') describe J/ψ production in parton showers
- GFIP and FJF are two prescriptions for matching these calculations to Pythia
- Calculations shown for one choice of NRQCD matrix elements (Bodwin et al.)
- Reproduces data well, with a large jetty component to J/ψ production

pp measurement from CMS

Preliminary CMS results used 2015 pp data

- CMS-PAS-HIN-18-002
- Larger gluon fragmentation component w.r.t. charm, compared to LHCb kinematics
- Observe same qualitative difference btwn data and Pythia (based on NRQCD)
- Fraction of J/ψ in high p_T jet is small & underestimated by simulation

Aside: Nonprompt J/ψ

- Nonprompt J/ ψ are from b-hadron \rightarrow J/ ψ + X, with a wide variety of channels
- In contrast to prompt J/ψ , such decays are very well modeled by generators
- The z distribution ends up being very similar for prompt and nonprompt J/ψ
- Coincidental, as nonprompt z distribution driven by b-hadron decay kinematics
- Well-known from LEP that for b-hadrons, $\langle z \rangle \approx 0.8 0.9$

STAR joining the game

- Several differences w.r.t. CMS: √s, p_T & rapidity selections,
 jet reconstruction & resolution unfolding, prompt/nonprompt separation
- Nevertheless, qualitatively similar conclusions:

Fragmentation softer than models

Fraction in high p_T jets underestimated

NB: Point at z > 1 corresponds to exactly z = 1, displaced for clarity

Motivation for a PbPb measurement

- J/ψ suppression vs. p_T exhibits same rising trend as other hadron species
- Consistent w/ a universal trend that is well-described by parton-energy loss

 $J/\psi v_2$ has a non-zero value at large p_T , where energy-loss thought to dominate

The CMS experiment

- Muon detection: silicon tracking in 4T B-field + muon chambers
- Jet measurement: Hermetic ECAL + HCAL combined w/ tracking ("particle flow")
- Large acceptance: Full R = 0.4 jets inside $|\eta|$ < 2, w/ full muon coverage
- Data consists of dimuon triggered events using 1.6 nb⁻¹ of PbPb data (2018)
 & 302 pb⁻¹ of pp data (2017), both at collision energy of 5 TeV

Yield extraction

- Sizeable fraction of J/ψ from decays of b-hadrons
- Component separated w/ 2D fit to mass & decay length

Muon efficiency corrected in-situ using the tag-and-probe technique

Bin migration from jet resolution

Jets: anti- k_T , R = 0.4

"Constituent subtraction" for PbPb underlying event

- Wide jet resolution causes bin migration both in z, but also in jet p_T
- 2D unfolding performed with iterative D'Agostini algorithm
- Jet energy scale and resolution calibrations
 - Applied only to non-J/ψ component of jet
 - Residual in-situ corrections from boson-jet and dijet balancing

Systematic uncertainties

- · Jet uncertainties dominate for most bins
 - Unfolding uncertainties include variation of prior & choice of regularization
 - Jet energy scale and resolution important contributions in some bins
 - Underlying event modeling included in PbPb (sub-dominant)
- J/ψ extraction uncertainties only dominant in lowest z bin in PbPb

Updated pp results

- 10x larger data sample of pp collisions in 2017 w.r.t. 2015
- Kinematic cuts adjusted to take better advantage of CMS acceptance
- Results qualitatively similar to previous ones

Nuclear modification

- Yield of J/ψ in PbPb suppressed at all values of z, w.r.t. pp
- Systematic uncertainties do not permit a precise statement, but data are consistent with a decreasing suppression with increasing z
- Consistent with picture in which "direct" J/ψ are less suppressed

Connection to light flavor sector?

ATLAS, PLB 790 (2019) 108

- Whereas inclusive charged hadron R_{AA} rises continually w/ p_T almost to unity, jets flatten out in central events staying suppressed until the largest p_T probed
- One interpretation, similar to J/ψ-in-jet, quenching depends on parton shower multiplicity, such that hard fragmenting jets are less suppressed

Conclusions / Outlook

- J/ψ more jet-like than predicted by most models
 - Potential explanation of long-standing quarkonium puzzle
 - Potential implications for medium effects on J/ψ
- J/ψ jet production now measured in PbPb
 - J/ψ also found to be jet-like in PbPb
 - Consistent w/ decreasing suppression with increasing z,
 expected if jet quenching depends on parton shower multiplicity
 - Supports picture where jet quenching is relevant for high p_T J/ ψ
- Further studies needed to determine where jet quenching effects are relevant
 - J/ ψ -hadron correlations at lower p_T
 - Y-in-jet measurement to study quark mass effect