Understanding Neutrino Beams

Yoshikazu Nagai

December 6-10, Zimányi School '21

CONTENTS

- Introduction
- NA61/SHINE Measurements for the T2K Experiment
- An Idea for Future Improvement
- Summary

Main Focus: Accelerator-Based Neutrino Experiment

J-PARC beamline (30 GeV proton beam) experiments: T2K (running), T2HK (2027~)

A long-baseline neutrino experiment to primarily study neutrino oscillation.

Long-baseline Neutrino Experiments

example:

T2K experiment

<u>Beamline</u>

Create intense u_{μ} and $ar{
u}_{\mu}$ beams by shooting proton beams on target, focusing hadrons, and letting them decay to neutrinos

Near detector

- Flux and cross section constraint for far detector prediction
- Near detector physics measurements
 - —> neutrino-nucleus cross sections, search for new physics, etc

$$N_{ND} \propto \int \Phi_{ND} \cdot \sigma \ dE_{\nu}$$

Far detector

- ullet Count u_e and $ar
 u_e$ appearance signals (measure the size of CP violation)
- ullet Measure u_{μ} and $ar{
 u}_{\mu}$ disappearance

—> neutrino oscillations

$$N_{FD} \propto \int \Phi_{FD} \cdot \sigma \cdot P_{osc} \ dE_{\nu}$$

$$\propto \int R_{\frac{FD}{ND}} \cdot \Phi_{ND} \cdot \sigma \cdot P_{osc} \ dE_{\nu}$$

Long-baseline Neutrino Experiments

example: T2K experiment

Beamline

lacksquare Create intense u_{μ} and u_{μ} beams by shooting proton beams on target, focusing hadrons, and letting them decay to neutrinos

Main question of this talk:

How many neutrinos does the accelerator produce and shoot towards the detector?

Neutrino Beamline at J-PARC

To understand neutrino beams...

- How many primary protons?
- Proton beam profile on the target?
- Secondary hadron production?
- Magnetic field of horns?
- Muon profile after decay of secondary hadrons
- etc...

We need to know these parameters very precisely.

This talk focuses on production of hadrons which are ancestor of neutrinos

(neutrino) (antineutrino)
$$\pi^+ \to \mu^+ \nu_\mu \qquad \pi^- \to \mu^- \bar{\nu}_\mu$$

How to Make a Neutrino Beam

Hadron productions of π^\pm and K^\pm through primary interactions in the target

-> Primary contribution to the neutrino flux

Uncertainty on Flux Prediction

How well do we understand neutrino flux?

A leading source of the systematic uncertainty!!

Goal: below 5% (next few year), below 3% (for next generation experiments)

Constraining Hadron Production Uncertainty

- Neutrino flux predictions rely on model predictions
 - FLUKA (J-PARC/T2K) to simulate p+C —> hadrons
 - Geant3 to simulate the rest of interactions

However, hadron production prediction is difficult.

External data is necessary to constrain uncertainty on model predictions

External hadron production measurements are essential!

- Allaby et al Tech. Rep. 70-12, CERN (1970)
- Eichten et al Nucl. Phys. B44, 333 (1972)
- BNL E910 Phys. Rev. C77, 015209 (2008)
- HARP Nucl. Phys. B732, 1 (2006), EPJ C52, 29 (2007), Astr. Phys. 29, 257 (2008)
- NA61/SHINE (running, see following slides)
- EMPHATIC (running, arXiv:2106.15723)

NuMI beamline at FNAL (MINERVA flux)

Leonidas Aliaga (Ph.D Thesis, 2016)

Only some key data sets relevant to the T2K beam energy (30 GeV)

NA61/SHINE Measurements for T2K

"The SPS Heavy Ion and Neutrino Experiment"

Over 150 physicists from 30 institutions and 15 countries

LHC NA61/SHINE (SPS north area) SPS <- CERN (main site)</pre>

NA61/SHINE Experimental Facility

A fixed target experiment at SPS with

- Good beam particle selection (p, π, K) using beamline Cherenkov detectors
- Large acceptance spectrometer for charged particles
 - Time Projection Chambers (TPCs) for tracking and dE/dx
 - 2 dipole magnets with 1.5 T field
 - Time-of-flight detectors placed downstream

Precise tracking with:

- Particle identification
- Momentum measurement

NA61/SHINE Measurements for T2K

- Thin target: p@30 GeVon 2cm graphite target
 - total cross-section and $\pi^{+/-}$ spectra measurements (Phys. Rev. C84 034604 (2011))
 - K+ spectra measurement (Phys. Rev. C85 035210 (2012))
 - K_{0S} and Λ spectra measurements (Phys. Rev. C89 (2014) 025205)
 - total cross-section and $\pi^{+/-}$, $K^{+/-}$ p, K^0_S , and Λ spectra measurements (Eur. Phys. J. C76 84 (2016))

- Total cross section (hadron production cross-section)
- Differential cross section or multiplicity of each particle species

$$\left(\frac{d^2\sigma}{dpd\theta} = \sigma_{\rm prod} \frac{d^2n}{dpd\theta}\right)$$

NA61/SHINE Measurements for T2K

- Replica target: p@30 GeV on 90cm replica graphite target
 - methodology, $\pi^{+/-}$ yield measurement (Nucl. Instrum. Meth. A701 99-114 (2013))
 - $\pi^{+/-}$ yield measurement (Eur. Phys. J. C76 617 (2016))
 - $\pi^{+/-}$, p, and $K^{+/-}$ yield measurements (Eur. Phys. J. C79, no.2 100 (2019))
 - proton beam survival probability measurement (Phys. Rev. D 103, 012006 (2021))

T2K replica graphite target (90 cm, 1.9λ)

Show results briefly

- Differential hadron yields or multiplicity ($rac{d^3n}{dpd heta dz}$)
- Hadron production cross-section via beam attenuation

$$(P_{\text{survival}} = e^{-Ln\sigma_{\text{prod}}})$$

A production cross section measurement using the attenuation of beam particles —> Achieved 2% total uncertainty in good agreement with past measurements

How to Improve Flux Model with External Data

Two corrections to constrain model ambiguity

- Interaction length: Tune production cross-section to external measurement
- Multiplicity: Tune differential hadron multiplicity (differential cross-section) to external measurement

Flux Uncertainty with NA61/SHINE Data

Lukas Berns (NBI 2019)

- Replica target measurements will improve uncertainty down to 5%
 - -> Huge improvement has been achieved
 - —> Nevertheless, precision is not enough. T2K/Hyper-K goal is 2-3%!!

T2K: Constraint on δ_{CP} Phase

T2K set the most stringent constraint on the CP-phase in neutrino oscillations.

-> NA61/SHINE data have largely contributed to achieve this milestone!

(note: T2K Nature result used only NA61 thin target data —> result will further improve)

Understanding Various Neutrino Sources

As we discussed, precise flux knowledge is a key input for neutrino experiments

Accelerator neutrinos (T2K, HK, DUNE, SBN, etc...)

(I have spoken about T2K)

Neutrinos from spallation neutron source

 A common bottleneck on flux prediction: Hadron production (not much data available for low-energy region 1-10 GeV)

Hadron Production & Flux Prediction

A common bottleneck on flux prediction: Hadron production (1-10 GeV)

Low-Energy Beamline at the CERN H2 beamline

- We are finalizing the design of new tertiary low-E beamline at CERN SPS H2-bemeline
 - Low-Energy = 2-13 GeV —> the lowest energy NA61 achieved was 13 GeV
 - proton, pion and kaon beams with good beam particle ID
- We have submitted a document to express our intention to build a new beamline at CERN
 SPS —> we seek official project approval in next year
 - Construction: 2022 early 2024
 - First beam, second half of 2024

Low-E beamline: Project Detail

Dedicated workshop last year

NA61/SHINE at Low Energy 9-10 December 2020 Q Europe/Zurich timezone Overview The NA61/SHINE collaboration is exploring the potential addition of a very-low-energy beam. This workshop will explore the physics opportunities for NA61 in the 1-20 GeV region as well as the beam Timetable design and its expected capabilities. Contribution List My Conference 400 GeV Primary beam Low energy (2 - 13 GeV/c) My Contributions secondary beam Registration Off-momentum secondary Participant List Videoconference

https://indico.cern.ch/event/973899

Double bend achromat, momentum selection

Submitted project document in October

Open to everyone! If you are interested in, please subscribe to the dedicated e-group

Final focus quadrupoles

"na61-lowe-beamline" from here: https://e-groups.cern.ch (or contact me if you cannot)

Summary

- Precise flux knowledge is crucial for accelerator-based neutrino experiments
 - Hadron production is the leading source of flux uncertainty
- External hadron production measurements are essential to reduce the leading systematic uncertainty on neutrino flux prediction
 - NA61/SHINE measurements largely improved T2K flux prediction
- A new idea to further improve flux knowledge: building a new low-E bamline
 - It is not only for conventional neutrino beams but also for other neutrino sources
 - The low-E beamline can start operation after 2024 at the earliest (if approved!)

Backup

Neutrino Oscillation in a Nutshell

- Neutrino flavor eigenstates are not the same as neutrino mass eigenstates
- —> the mixing of flavor and mass eigenstates leads to oscillations

Flavor eigenstates

$$(\nu_e, \nu_\mu, \nu_ au)$$

neutrino states on their interactions

Mass eigenstates

$$(\nu_1, \nu_2, \nu_3)$$

neutrino states on their propagation

 Describe neutrino oscillation phenomena with 3 mixing angles, 2 independent mass splittings, and 1 CP phase

$$egin{pmatrix}
u_e \\

u_\mu \\

u_ au
\end{pmatrix} = \left(egin{array}{c} \mathsf{PMNS} \\ \mathsf{matrix} \end{array}
ight) \left(egin{array}{c}
u_1 \\

u_2 \\

u_3 \end{matrix}
ight) \left(egin{array}{c}
\Delta m_{21}^2 \\

\Delta m_{31}^2 \\

\sigma r \\
\Delta m_{32}^2 \end{matrix}
ight)$$

Pontecorvo–Maki–Nakagawa–Sakata (PMNS) matrix

$$U_{PMNS} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & c_{23} & s_{23} \\ 0 & -s_{23} & c_{23} \end{pmatrix} \begin{pmatrix} c_{13} & 0 & s_{13}e^{-i\delta} \\ 0 & 1 & 0 \\ -s_{13}e^{i\delta} & 0 & c_{13} \end{pmatrix} \begin{pmatrix} c_{12} & s_{12} & 0 \\ -s_{12} & c_{12} & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

$$c_{ij} \equiv \cos\theta_{ij} \quad s_{ij} \equiv \sin\theta_{ij}$$

Neutrino Oscillation in a Nutshell

Two-neutrino mixing approximation (for simplicity)

$$P(\nu_i \to \nu_j) = |\langle \nu_i | \nu_j; t \rangle|^2 = \sin^2 2\theta \sin^2 (\Delta m^2 (\text{eV}^2) \frac{L(\text{Km})}{E(\text{GeV})})$$

- Oscillations are seen
 as a function of L/E
- —> Design experiments to maximize oscillation probability based on this parameter

Neutrino Oscillation in a Nutshell

Three-neutrino oscillation probabilities

$(v_{\mu} \text{ disappearance})$

$$P(
u_{\mu} o
u_{\mu}) pprox 1 - 4\cos^2 heta_{13}\sin^2 heta_{23} \qquad 0.8$$
 $imes (1 - \cos^2 heta_{13}\sin^2 heta_{23})\sin^2\left(rac{1.27\Delta m_{32}^2L}{E}
ight)$ $imes (v_{
m e} \, {
m appearance})$ $imes (200 o) \div 20 o \div 2 (1.27\Delta m_{32}^2L)$

$(v_e appearance)$

$$P(\nu_{\mu} \to \nu_{e}) \approx \sin^{2}(2\theta_{13})\sin^{2}\theta_{23}\sin^{2}(\frac{1.27\Delta m_{32}^{2}L}{E})$$

$$\frac{\text{sign changes}}{\text{b/w } v \text{ and } \overline{v}} \longrightarrow \mp \frac{1.27 \Delta m_{21}^2 L}{E} 8 \overline{J_{CP}} \sin^2 \left(\frac{1.27 \Delta m_{32}^2 L}{E} \right)$$

The size of CP symmetry-violating effect depends on the Jarlskog invariant:

$$J_{CP} = \frac{1}{8}\cos\theta_{13}\sin(2\theta_{12})\sin(2\theta_{23})\sin(2\theta_{13})\sin\delta_{CP}$$

(if $\delta_{CP} = 0$ or π , *CP* symmetry is conserved)

- $\sim v_{\mu}$ disappearance —> sensitive to $heta_{23}$ and Δm^2_{32}
- \circ $v_{\rm e}$ appearance —> sensitive to $heta_{13}$, $heta_{23}$, and $heta_{CP}$

NA61/SHINE Physics Program

Hadron beams

- primary protons at 400 GeV/c
- secondary hadrons (p, π, K) at 13 350 GeV/c

Ion beams

- primary (Ar, Xe, Pb) at 13-150 AGeV/c
- secondary Be at 13 150 AGeV/c (from Pb fragmentation)

- Broad physics program
 - Neutrino
 - Hadron production measurements to improve neutrino beam flux predictions
 - Strong interaction / Heavy ion
 - Search for the critical point
 - Study the onset of QCD deconfinement
 - Study open-charm production mechanism
 - Cosmic ray
 - Hadron production measurements to improve air-shower model predictions
 - Study (anti-)deuteron production mechanism for the AMS and GAPS experiments
 - Nuclear fragmentation cross sections to understand cosmic-ray flux

How to Make a Neutrino Beam

- Secondary interactions in the target (hadrons + C/Be)
- Secondary interactions with horn or beamline materials (hadrons + X)
- Neutral hadron decay $(p + C / Be \longrightarrow V^0 + X)$
- —>Non-negligible contribution to the neutrino flux

T2K magnetic horn

Thin Target Measurement

- Thin target: a few % of nuclear interaction length (λ) to study single interactions
 - Total cross sections (inelastic and production cross sections)

$$\sigma_{\rm inel} = \sigma_{\rm total} - \sigma_{\rm el}$$
, $\sigma_{\rm prod} = \sigma_{\rm inel} - \sigma_{\rm qe}$

—> Results are used to correct hadron interaction length (probability of interaction)

$$W(p_1, p_2, x_1, x_2) = \frac{[P_{\text{interaction}} \cdot P_{\text{escape}}]_{\text{data}}}{[P_{\text{interaction}} \cdot P_{\text{escape}}]_{\text{MC}}}$$

$$= \frac{\sigma_{\text{data}}(p_1)}{\sigma_{\text{MC}}(p_1)} \cdot e^{-x_1[\sigma_{\text{data}}(p_1) - \sigma_{\text{MC}}(p_1)]\rho} \cdot e^{-x_2[\sigma_{\text{data}}(p_2) - \sigma_{\text{MC}}(p_2)]\rho}$$

—> Results are also important to obtain proper normalization for the differential cross section yields

Thin Target Measurement

- Thin target: a few % of nuclear interaction length (λ) to study single interactions
 - Measurement of differential cross sections ($\frac{d^2\sigma}{dpd\theta}$)

We measure differential production yields ($\frac{d^2n}{dpd\theta}=N(p,\theta)$)

(yield of particles per interaction, momentum, radian)

then, relate to differential cross section via $\sigma_{
m prod}$: $\frac{d^2\sigma}{dpd\theta}=\sigma_{
m prod}\frac{d^2n}{dpd\theta}$

—> Results are used to calculate weights for each interactions (♣) to correct neutrino flux predictions

$$W(p, heta) = rac{N(p, heta)_{\mathrm{Data}}}{N(p, heta)_{\mathrm{MC}}}$$

Replica Target Measurements

- Replica target: T2K (90 cm graphite), NuMI (120 cm graphite)
 - Measurement of differential production yields ($\frac{d^3n}{dpd\theta dz}=N(p,\theta,z)$) (yield of particles per interaction, momentum, radian, z)
 - —> maybe also φ if target cross-section is not circular, like NuMI target

Weights for each exiting point (O) to apply correction to neutrino flux prediction

$$W(p, \theta, z) = rac{N(p, \theta, z)_{\mathrm{Data}}}{N(p, \theta, z)_{\mathrm{MC}}}$$

- Measurement of beam survival probability ($P_{
 m survival}=e^{-Ln\sigma_{
 m prod}}$) (L: length of target, $\it n$: number of atoms per unit volume)
- —> Results are useful to understand beam attenuation inside the target via $\sigma_{
 m prod}$ measurement

position Z

Note: Notation of Production Cross Section

 $\rightarrow \sigma_{\rm inel}$

Not all experiments use the same definition for the production cross section

Coherent elastic process: interaction on the nucleus $-> \sigma_{\rm el}$

Quasi-elastic process: interaction on bound nucleons —> $\sigma_{
m qe}$

Production process: interaction with new hadron production $\rightarrow \sigma_{\mathrm{prod}}$

$$\sigma_{
m inel} = \sigma_{
m total} - \sigma_{
m el} \ \sigma_{
m prod} = \sigma_{
m inel} - \sigma_{
m qe}$$

<u>Use this definition through the talk</u> (T2K uses this definition)

Earlier experiments: mixed up inelastic and production cross sections

e.g. Denisov, et. al (1973): $\sigma_{
m absorption} = \sigma_{
m total} - \sigma_{
m el}$ -> $\sigma_{
m inel}$ in our definition e.g. Carroll, et. al (1979): $\sigma_{
m absorption} = \sigma_{
m total} - \sigma_{
m el} - \sigma_{
m qe}$ -> $\sigma_{
m prod}$ in our definition

(This shows hadron distribution contributing to the T2K flux, not NA61 data)

(This shows hadron distribution contributing to the T2K flux, not NA61 data)

A production cross section measurement using the attenuation of beam particles —> Achieved 2% total uncertainty in good agreement with past measurements

Constraint on δ_{CP} Phase

The most stringent constraint on the CP-violating phase in neutrino oscillations!!

Extracting Oscillation Parameters

- T2K data prefers $\delta_{CP} = -\pi/2$ hypothesis
- T2K data weakly prefers non-maximal $sin^2\theta_{23}$
- T2K data weakly prefers normal hierarchy