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Early time dynamics, thermalization &
hydrodynamics



Early time dynamics

Standard model of nucleus-nucleus (A+A) collisions based on effective

macroscopic descriptions of QCD, exploiting clear separation of time
scales in the reaction dynamics

hadronic scattering

nitial state & free-streaming
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Space-time dynamics dominated by hydrodynamics expansion
-> excellent description of typical flow observables based on hydro models

Dynamical description of initial state/onset of hydrodynamics
theoretically desirable; new ways to connect cold QCD and hot QCD
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Initial state & Equilibration of HICs

non-equilibrium

colliding e

nuclei

T ~ 1fm/c
Teoll K 1fm/c Hydro /

Energy deposition can be calculated within Color-Glass Condensate
effective theory of high-energy QCD

McLerran, Venugopalan PRD49 (1994) 2233-2241, Kovner, McLerran, Weigert D52 (1995) 6231-6237

-> Gluon dominated initial state far-from equilibrium

Significant progress to understand subsequent equilibrium process
based on studies in QCD kinetic theory

Arnold,Moore,Yaffe JHEP 0301 (2003) 030 z
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Equilibration of HICs

Equilibration proceeds ""bottom-up” via radiative break-up of hard gluons

Kurkela, Zhu PRL 115 (2015) 182301; Keegan,Kurkela,Mazeliauskas, Teaney JHEP 1608 (2016) 171; Baier et al. Phys.Lett.B 502 (2001) 51-58
Kurkela, Mazeliauskas, Paquet, SS, Teaney PRL 122 (2019) no.12, 122302; PRC 99 (2019) no.3, 034910
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Pre-equilibrium QGP gluon dominated & highly anisotropic @



Hydrodynamic behavior

Non-equilibrium evolution of energy-momentum tensor in QCD kinetic theory allows
to study applicability of hydrodynamics (Bjorken flow/1D boost-inv. expansion)

w = TTesr/(470/8)

Giacalone, Mazeliauskas, SS PRL 123 (2019) 26, 262301

Despite significant differences in underlying microscopics, similiar
macroscopic behavior emerges in different microscopic theories
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Viscous hydrodynamics becomes
applicable on time scales

Kurkela, Mazeliauskas, Paquet, SS, Teaney 1805.01604; 1805.00961
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when the QGP is significantly out-of-
equilibrium
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Equilibration at finite density

Extension of equilibration studies to finite net-baryon density
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Due to smaller energy densities hydrodynamization is delayed
at lower collision energies, QGP can spend significant amount of
time away from equilibrium @


https://https://arxiv.org/abs/2012.09068

Dynamics of HICs
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Based on progress in understanding early time 0.018 :
dynamics & equilibration can now describe HIC | ¢ 1 . [ Lo
from beginning to end by matching different .
effective descriptions of QCD v e e
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Controlled extraction of QGP transport properties without large
uncertainties from early times

Difficult to gain experimental access to early time non-equilibrium
dynamics in heavy-ion collisions



Phenomenological applications



Exploring the early stages of HICs

Investigate bulk properties of heavy-ion collisions
that are

Explore smaller lifetime of smaller systems (high-
mult. p+p,p/d/He+Au,p+Pb,future O+0O) to enhance
impact of pre-equilibrium stage

Exploit multi-messenger nature of Heavy-lon collisions
to study rare probes such high-energy Jets or electro-
magnetic radiation

QGP phase
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Sensitivity to Initial state

Entropy production occurs only when system is significantly
out-of-equilibrium

non-equilibrium QGP near-equilibrium QGP hadron gas
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Entropy production in HICs is dominated by early time dynamics
and directly accessible by measurement of dNcn/dn

Schematically:
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initial entropy

production freeze-out

Giacalone, Mazeliauskas, SS PRL 123 (2019) 26, 262301 @



Entropy production in HICs

Based on insights from non-equilibrium studies, can now
make relation between dE/dn and dNcn/dn explicit
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Sensitivities/Uncertainties:

Equilibrium properties: Nen/S~7.5, vert ~40 approximately known

C~0.95+0.15 surprisingly well constraint
41 n/s~(1-3) not well constraint in relevant temperature range (T~4Tc)

Initial state energy density:
(eT)o calculable in high-energy QCD with significant uncertainties from
small-x TMDs

Giacalone, Mazeliauskas, SS PRL 123 (2019) 26, 262301



Initial state in HICs

Since dNcn/dn is measured with high precision in HICs, can be exploited to
simultaneously constrain initial state TMDs & transport properties (n/s)

Proof-of-principle: Statistical analysis of GBW model to simultaneously
determine Qs and (n/s)
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Description of space-time dynamics from beginning to end enables
important link between EIC physics and Heavy-lon physics @

Y.Hoffmann, BSc Thesis; Du,Hoffmann,SS, work in progress



Di-lepton production in HICs

Electromagnetic probes produced throughout space-time evolution of HICs;
escape collision unscathed as they do not interact strongly with the QGP

Di-lepton (e+e-/uty-) pairs with invariant mass M~GeVs : :
produced during the initial state; late stage production
IS suppressed by exp(-M/T)

q ¢

Non-equilibrium production requires production of quark/anti-quarks from
gluon dominated initial state; pre-equilibrium yields suppressed by

short duration of pre-equilibrium phase quark/anti suppression at early times

Calculate pre-equilibrium di-lepton production for LO process, with parametrized
phase-space distribution

_ ol VP + E2(7)p?
fora(T0e,02) = qf )fFD( A(r) )

with anisotropy ¢, energy scale /A, and quark-suppression factor g matched to
macroscopic evolution of pL/e, e, eq/egand energy scale fixed by dNen/dn

Coquet,Du,Ollitrault,SS,Winn; arXiv:2104.07622



Di-lepton production in HICs

Distinguish between production in the pre-equilibrium (w<1) and
hydrodynamic (w>1) stages
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Coquet,Du,Ollitrault,SS,Winn; arXiv:2104.07622

Exciting window into pre-equilibrium dynamics for 1GeV<M<3GeV
accessible with next generation of heavy-ion detectors (ALICE3,LHCDb)



Small systems

Effective kinetic description of 2+1D boost-invariant systems,
including non-trivial geometry in transverse plane, within conformal

RTA Boltzmann equation

P 0uf = Crralf] = P (g — ), 7= 5077

Single conformal scaling variable/opacity parameter in 2+1D
governs system size/coupling dependence

Kurkela, Wiedemann, Wu EPJC 79 (2019) 965; Ambrus, SS, Werthmann arXiv:2109.03290
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https://arxiv.org/abs/2109.03290

Small systems

Early long. cooling well described by Bjorken dynamics for
sufficiently large opacities
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Development of transverse flow show signiticant opacity
dependence in relevant range of opacities  ambus, ss, wertmann anxiv2100.03200


https://arxiv.org/abs/2109.03290

Hydrodynamics in small systems”

Kinetic th. (RTA)

V2/€2 = ===

Visc. hydro (vHLLE) —g ===  Despite reasonable
Ideal hydro -

quantiative description
at moderate opacities
discrepancies between
Kinetic Theory (RTA)
and hydrodynamics
persist even at very
large opacities due to
iInhomogenous cooling
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Hydrodynamics does not properly describe early pre-equilibrium stage,;
need to include pre-equilibrium stage in theoretical description of HICs
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Conclusions & Outlook



Conclusions & Outlook

Developments in equilibration dynamics enable to include pre-
equilibrium stage into event-by-event studies of heavy-ion collisions

Connecting initial state and final state in heavy-ion collisions enables
new links between hot QCD (heavy-ions) and cold QCD physics (EIC)

Exciting directions to explore non-equilibrium QCD dynamics with
electro-magnetic probes & in small systems

Still many things to be explored in small systems, longitudinal
dynamic, jets, ...
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Inhomogenous cooling
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Initial state in HICs

Since dNcn/dn is measured with high precision in HICs, can be exploited to
simultaneously constrain initial state TMDs & transport properties (n/s)

Proof-of-principle calculation based on kr A(2,b) = Q2 o (a/x0) > ooTa(b)
factorization calculation in GBW model
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