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Relativistic Hydrodynamics

Evolution of the macroscopic conserved quantities 1,2,3.

∂µ(T
µν
(0) + δTµν) = 0, ∂µ(N

µ
(0) + δNµ) = 0. (1)

Tµν = Tµν
(0) + δTµν is the conserved energy momentum tensor and

Nµ = Nµ
(0) + δNµ is associated with conserved current, e.g. baryon number

current associated with baryon number conservation.
At each space time point xµ we can assign temperature (T(x)), chemical
potential (µ(x)) and a collective four-velocity field (uµ(x)).
An ideal fluid is defined by the assumption of local thermal equilibrium, i.e., all
fluid elements must be exactly in thermodynamic equilibrium.
Primary fluid-dynamical variables: T(x), µ(x) and uµ(x).

1Romatschke, P., Romatschke, U.., arXiv:1712.05815.
2A. Jaiswal, arXiv:1408.0867
3A. Jaiswal, V. Roy, arXiv:1605.08694.
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The conserved currents of an ideal fluid can then be expressed as,

Tµν
(0) = ϵuµuν + P∆µν , Nµ

(0) = nuµ; Sµ
(0) = suµ. (2)

∆µν = gµν + uµuν is the projector orthogonal to uµ.
The deviation from local thermodynamic equilibrium results in dissipative
effects. Generically all fluids are of dissipative nature.
Dissipative effects in a fluid originate from irreversible thermodynamic
processes that occur during the motion of the fluid.
The earliest covariant formulation of dissipative fluid dynamics were due to
Eckart in 1940 4 and, later, by Landau and Lifshitz in 1959 5.

Tµν = ϵuµuν + P∆µν +Π∆µν + 2u(µhν) + πµν (3)
Nµ = nuµ + nµ. (4)

Choice of the fluid frame: Landau frame: hµ = 0.

4C. Eckart, Phys. Rev.58, 267 (1940).
5L.D. Landau and E.M. Lifshitz,Fluid Mechanics(Butterworth-Heinemann, Oxford,1987).
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In the presence of dissipative currents, the entropy is no longer a conserved
quantity i.e. ∂µSµ ̸= 0.
Entropy four current,

Sµ = Pβµ + βνTµν − αNµ, βµ = uµ/T (5)

The relativistic Navier-Stokes theory can be obtained by applying the second law
of thermodynamics to each fluid element.

∂µSµ = −βΠΘ− nµ∇µα+ βπµνσµν ≥ 0. (6)

Second law of thermodynamic can easily be satisfied if one identifies6,

Π = −ζΘ; nµ = κ∇µα, πµν = 2ησµν . (7)

As long as ζ, κ, η ≥ 0, the entropy production is always positive.

6Θ ≡ ∂µuµ; ∇µ = ∆µα∂α; σµν ≡ [ 1
2 (∇µuν +∇νuµ)− 1

3 (∇
αuα)∆µν ]
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Stability and causality
Entropy production is essential but not sufficient condition for a theory of
dissipative relativistic hydrodynamics 7,8.
Dynamics of departures of these fluids from their equilibrium states or stability
and causality also important for a relativistic theory.

Stability and causality

Linear perturbations

Rest frame Boosted frame

Nonlinear perturbations

Rest frame Boosted frame

If the stability and causality is preserved in all the boosted frames then we get an
acceptable physical theories of relativistic dissipative hydrodynamics 9.

7W. A. Hiscock and L. Lindblom, ANNALS OF PHYSICS 151, 466-496 (1983)
8W. A. Hiscock and L. Lindblom,PHYSICAL REVIEW D, VOLUME 31, NUMBER 4, 725.
9Go to backup 1
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IS theory
It turns out that relativistic generalization of the Navier-Stokes theory is unstable
i.e. presence of the exponentially growing modes.
It is also been argued that Navier-Stokes theory is acausal.
Israel and Stewart’s formulation of causal relativistic dissipative fluid dynamics
is the most popular and widely used.
Up to second order in dissipative currents,

Sµ = suµ − αnµ − (β0Π
2 − β1nµnµ + β2πρσπ

ρσ)
uµ

2T

−(α0Π∆µν + α1π
µν)

nν
T

+O(δ3). (8)

The existence of second-order contributions to the entropy four-current in leads
to: 10,11.

π̇⟨µν⟩ +
πµν

τπ
=

1
β2

[
σµν − βππθπ

µν ......

]
. (9)

10W. Israel and J. M. Stewart, “Transient relativistic thermodynamics and kinetic theory,” Annals
Phys.118, 341 (1979).

11G. S. Denicol, H. Niemi, E. Molnar, and D. H. Rischke, Phys. Rev.D85(2012) 114047
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Energy momentum tensor and number current 12:

Tµν = ϵuµuν + P∆µν +Π∆µν + 2u(µhν) + πµν ; Nµ = nuµ + nµ. (10)

Landau’s theory Israel-Stewart theory
Basic variables T, µ, uµ T, µ, uµ, Π, πµν , nµ

Dissipative flux Π, πµν , nµ Π, πµν , nµ

Hydro Equations

uν∂µTµν = 0, uν∂µTµν = 0,
∆α

ν ∂µTµν = 0, ∆α
ν ∂µTµν = 0,

∂µNµ = 0, ∂µNµ = 0,

∂µSµ ≥ 0
Π = −ζ∂µuµ, τΠΠ̇ + Π = fΠ(Π, πµν , nµ),

nµ = κ∇µ(µ/T), τnṅ⟨µ⟩ + nµ = fn(Π, πµν , nµ),
πµν = 2ησµν . τππ̇

⟨µν⟩ + πµν = fπ(Π, πµν , nµ).
Causality and stability No Yes (linear level )

12Amaresh Jaiswal, arXiv: 1408.0867.
ARPAN DAS (ifj) 7 / 23



First order causal and stable hydrodynamics

Important questions are: 13,14

1 Is it possible to get relativistic viscous hydrodynamics which only deals with
dynamical variables T , uα, and µ?

2 Does this theory gives rise to sensible physics, e.g. the equilibrium state is stable,
and there is no superluminal propagation?

Naive generalization of the Navier-Stokes equations does satisfy Q1. but
Landau’s theory is not complete as it give rise to unstable equilibrium.
On the other hand Israel Stewart like theories preserve stability and causality but
it deals with non Navier-Stokes degrees of freedom.
The idea we would like to explore is whether both stability and causality might
be maintained if one uses a certain out of equilibrium definition of the
hydrodynamic variables which differs from the choice adopted by either Eckart
or by Landau and Lifshitz.

13Bemfica, F.S., Disconzi, M.M., Noronha, J.arXiv:1708.06255.
14Kovtun, P.arXiv:1907.08191
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The physical objects Tµν = ⟨T̂µν⟩, Jµ = ⟨Ĵµ⟩ can still be expressed in terms of
the quantities T , uα and µ.
In equilibrium, the quantities T , uα and µ become the actual temperature, fluid
velocity, and the chemical potential.
However, out of equilibrium, T , uα and µ have no first-principles microscopic
definitions, and thus should be viewed as merely auxiliary variables used to
parameterize the physical observables Tµν and Jµ.
The hydrodynamic expansion is a gradient expansion.

Tµν = O(1) +O(∂) +O(∂2) + ...+O(∂k) + ..., (11)

Jµ = O(1) +O(∂) +O(∂2) + ...+O(∂k) + ..., (12)

Given a time like unit vector uµ, the energy-momentum tensor (Tµν) and the
current (Jµ) may be decomposed as,

Tµν = Euµuν + P∆µν + (Qµuν + Qνuµ) + T µν , Jµ = Nuµ + J µ; (13)

where Qµ, T µν , and J µ are transverse to uµ, and T µν is symmetric and
traceless.
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To the first order in the derivative expansion,

E = ϵ+ ε1
uλ∂λT

T
+ ε2(∂.u) + ε3uλ∂λ(µ/T) +O(∂2), (14)

P = p + π1
uλ∂λT

T
+ π2(∂.u) + π3uλ∂λ(µ/T) +O(∂2), (15)

Qµ = θ1u̇µ +
θ2

T
∆µλ∂λT + θ3∆

µλ∂λ(µ/T) +O(∂2), (16)

T µν = −ησµν +O(∂2), (17)

N = n + ν1
Ṫ
T
+ ν2(∂.u) + ν3uλ∂λ(µ/T) +O(∂2), (18)

J µ = γ1u̇µ +
γ2

T
∆µλ∂λT + γ3∆

µλ∂λ(µ/T) +O(∂2). (19)

In equilibrium, the quantities T , uα and µ become the actual temperature, fluid
velocity, and the chemical potential.
It can be argued that in the 16 dimensional parameter space spanned by ε1,2,3,
π1,2,3, θ1,2,3, ν1,2,3, γ1,2,3, and η the theory is causal and stable.
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Linear mode analysis: look for plane wave solutions of the form, eik.x−iωt.
Shear channel for uncharged fluid e.g.

ω(k) =
i(ϵ0 + p0)

√
1 − v2

0

ηv2
0 − θ

+ O(k.v0) , (20)

Stability of the shear channel fluctuations requires: θ > η > 0.
The Landau-Lifshitz convention sets θ = 0 at non-zero η =⇒ stability criteria
is not satisfied.
Sound channel of uncharged fluid e.g.

ω(k) = −i
ϵ0+p0

θ
+ O(k2). (21)

For the stability of the sound mode one requires θ > 0.
θ > 0 contradicts the Landau-Lifshitz convention.
Special frame choice of the most general first order hydrodynamics can give rise
to unstable equilibrium state. This is just a bad choice of the frame. In general
first order hydrodynamics is stable and causal.
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IS-FOCS correspondence
For Bjorken flow, ds2 = dτ 2 − dx2 − dy2 − τ 2dξ2, τ =

√
t2 − τ 2,

ξ = Tanh−1(z/t), uµ = (1, 0, 0, 0), πµ
ν = diag(0,−π/2,−π/2, π).

For the IS theory hydrodynamic equation becomes, 15,16

dε
dτ

= −ε+ p
τ

+
π

τ
, (22)

τR
dπ
dτ

+ π =
4
3
η

τ
−
(

4
3
+ λ

)
τR
π

τ
, (23)

For the FOCS approach, the evolution equations are reduced to the formula

dE
dτ

+
E + P
τ

− 4
3
η

τ 2 = 0, (24)

where the following constitutive relations are assumed,

E = ε+ ε1
dT

Tdτ
+
ε2

τ
;P = p + π1

dT
Tdτ

+
π2

τ
. (25)

15Bjorken, J.D..Phys Rev1983,D27,140-151.
16G.S.Denicol and J. Noronha, arXiv:1711.01657
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IS theory FOCS theory
Variables T, uµ, πµν T, uµ

EoS p = 1
3ε =

aT4

3 p = 1
3ε =

aT4

3

Equations

dε
dτ = − ε+p

τ + π
τ , dE

dτ + E+P
τ − 4

3
η
τ 2 = 0,

τR
dπ
dτ + π = 4

3
η
τ −

( 4
3 + λ

)
τR

π
τ , E = aT4 + ε1

dT
Tdτ + ε2

τ ,
P = aT4

3 + π1
dT

Tdτ + π2
τ ,

y = dT
dτ y = dT

dτ

εi = ε0
i Tn; ε0

i is just a constant.
πi = π0

i Tn; π0
i is just a constant.

Both ε0
i and π0

i can be dimensional. Therefore we keep a general scaling of the
form Tn.
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For the IS theory

4aτRT3 dy
dτ

+ 12τRaT2y2 + aT3y
[

4 +

(
28
3

+ 4
(

4
3
+ λ

))
τR

τ

]
+

4aT4

3τ
+

4
3

aT4
(

4
3
+ λ

)
τR

τ 2 − 4
3
η

τ 2 = 0. (26)

FOCS hydrodynamic equation with y = dT/dτ ,

ε0
1Tn−1 dy

dτ
+ (n − 1) ε0

1 Tn−2 y2 +

(
4aT3+(ε0

1 + π0
1 + n ε0

2)
Tn−1

τ

)
y

+
4

3τ
aT4 +

π2 Tn

τ 2 − 4
3
η

τ 2 = 0.

(27)

Note that Eq. (26) has the form of a Ricatti equation (ay′ + by2 + cy + d = 0,
with b/a ̸= 0 and c/a ̸= 0), which was analyzed and may be possible to solve
analytically. 17

17G.S.Denicol and J. Noronha, arXiv:1711.01657
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Both IS and FOCS formalism has one common equation, y = dT/dτ .
After equating the terms with the same derivatives of the function y in Eq. (26)
and (27) we find:

ε0
1 = 4aτRT4−n, (28)

ε0
1 =

12
n − 1

aτRT4−n, (29)

π0
1 =

4
3

aτR(11 + 3λ)T4−n − ε0
1 − nε0

2, (30)

π0
2 =

4
9

aτR

(
4 + 3λ

)
T4−n. (31)

One can easily notice that in the strictly conformal case, n = 3, it is impossible
to exactly match the FOCS and IS equations.
An interesting situation takes place when n = 4. In this case Eqs. (28) and (29)
are fully consistent.
The kinetic coefficient ε0

1 has dimension of fm and, thus, it can be treated as a
fixed relaxation time related to τR (which is also constant).
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To uniquely determine the kinetic coefficient in the FOCS theory we use the
traceless condition of the energy momentum tensor.

Tµ
µ = 0 =⇒ πi = ϵi/3 =⇒ λ = −1. (32)

In the FOCS approach, the bulk viscosity appears as a linear combination of the
regulators and one can show that 18,

ζ = (−π2 + c2
s (ε2 + π1)− c4

sε1) = 0. (33)

For conformal equation of state with c2
s = 1/3 and the condition of vanishing of

Tµ
µ ,

ε0
1 = 4aτR, (34)

ε0
2 =

4
3

aτR, (35)

π0
1 =

4
3

aτR, (36)

π0
2 =

4
9

aτR. (37)

18Kovtun, P,arXiv:1907.08191.
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Analytical solution of FOCS

The general solution of the IS equations for Bjorken flow is 19,

ε(τ̂) = ε0

(
τ̂0

τ̂

) 4
3 +

λ+1
2

exp

(
− τ̂ − τ̂0

2

)

×

 M
−λ+1

2 ,

√
λ2+4̃a

2

(τ̂) + αW
−λ+1

2 ,

√
λ2+4̃a

2

(τ̂)

M
−λ+1

2 ,

√
λ2+4̃a

2

(τ̂0) + αW
−λ+1

2 ,

√
λ2+4̃a

2

(τ̂0)

 (38)

where τ̂ = τ/τR, ã = 16/(9τRT)(η/s),τ̂0 is the initial time, ε0 and α are
constants that define the initial value problem, and Mk,µ(x) and Wk,µ(x) are
Whittaker functions.
The matching to IS theory shown here implies that the general solution for the
energy density in IS also holds for the FOCS theory (for appropriate values of λ).
This is the first analytical solution of the FOCS theory.

19Denicol, G.S., Noronha, J.. arXiv:1711.01657.
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For the type of Israel-Stewart theory considered here, causality and stability
around equilibrium hold when η/(sτRT) ≤ 1/2 (where s = 4ε/3T)20,21.
The parameter λ does not appear contribute in a linearized analysis. So it can not
be constrained.
Mapping between IS theory and FOCS theory is only well defined if the IS
parameter λ takes values that are distinct from the standard 14-moment result.
For boost-invariant, baryon-free systems with a conformal equation of state, If
the regulator sectors of the theories are determined by a constant relaxation time,
there exists a mapping between the FOCS and IS approaches that makes their
dynamics exactly the same.
Even for finite mass but in the absence of any conserved charge there is a one to
one correspondence.
If we consider finite baryon density, even then a correspondence exists for an
ideal gas equation of state.

22.

20Denicol, G.S., Niemi, H., Molnar, E., Rischke, D.H..,arXiv:1202.4551.
21Pu, S., Koide, T., Rischke, D.H.. arXiv:0907.3906.
22If no time Go to the end
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In the presence of baryon number density

Tµν = εuµuν − p∆µν + πµν ; Nµ = nuµ + nµ. (39)

IS theory in the presence of baryon number density (for Bjorken flow)

dε
dτ

= −1
τ

[
(ε+ p)− π

]
; τπ

dπ
dτ

=
4
3
η

τ
− π − β

τπ
τ
π, (40)

dn
dτ

+
n
τ
= 0. (41)

Equation: (
ν1

T
− ν3µ

T2

)
T̈ +

(
∂ν1

∂T
1
T
− ν1

T2 − ∂ν3

∂T
µ

T2 + 2ν3
µ

T3

)
Ṫ2

+

(
∂ν1

∂µ

1
T
+
∂ν3

∂T
1
T
− ν3

T2 − ∂ν3

∂µ

µ

T2 − ν3

T2

)
Ṫµ̇

+

(
ν3

T

)
µ̈+

(
∂ν3

∂µ

1
T

)
µ̇2 +

(
∂n
∂T

+
1
τ

∂ν2

∂T

)
Ṫ

+

(
∂n
∂µ

+
1
τ

∂ν2

∂µ

)
µ̇+

n
τ
+
ν1

τ

Ṫ
T
+
ν3

τ

µ̇

T
− ν3

τ

µ

T2 Ṫ = 0. (42)
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In the FOCS sector,
dE
dτ

+
E + P
τ

− 4
3
η

τ 2 = 0;
dN
dτ

+
N
τ

= 0. (43)

Here one considers the following constitutive relations for a charged fluid:

E = ε+ ε1
Ṫ
T
+ ε2

1
τ
+ ε3

d
dτ

(µ
T

)
;P = p + π1

Ṫ
T
+ π2

1
τ
+ π3

d
dτ

(µ
T

)
, (44)

N = n + ν1
Ṫ
T
+ ν2

1
τ
+ ν3

d
dτ

(µ
T

)
. (45)(

ε1

T
− ε3µ

T2

)
T̈ +

(
∂ε1

∂T
1
T
− ε1

T2 − ∂ε3

∂T
µ

T2 + 2ε3
µ

T3

)
Ṫ2

+

(
∂ε1

∂µ

1
T
+
∂ε3

∂T
1
T
− ε3

T2 − ∂ε3

∂µ

µ

T2 − ε3

T2

)
Ṫµ̇

+

(
ε3

T

)
µ̈+

(
∂ε3

∂µ

1
T

)
µ̇2 +

(
∂ε

∂T
+

1
τ

∂ε2

∂T

)
Ṫ

+

(
∂ε

∂µ
+

1
τ

∂ε2

∂µ

)
µ̇+

ε+ p
τ

+
ε1 + π1

τ

Ṫ
T
+
π2

τ 2

+
ε3 + π3

τ

µ̇

T
− ε3 + π3

τ

µ

T2 Ṫ − 4
3
η

τ 2 = 0. (46)
ARPAN DAS (ifj) 20 / 23



The number conservation equation boils down to,(
ν1

T
− ν3µ

T2

)
T̈ +

(
∂ν1

∂T
1
T
− ν1

T2 − ∂ν3

∂T
µ

T2 + 2ν3
µ

T3

)
Ṫ2

+

(
∂ν1

∂µ

1
T
+
∂ν3

∂T
1
T
− ν3

T2 − ∂ν3

∂µ

µ

T2 − ν3

T2

)
Ṫµ̇

+

(
ν3

T

)
µ̈+

(
∂ν3

∂µ

1
T

)
µ̇2 +

(
∂n
∂T

+
1
τ

∂ν2

∂T

)
Ṫ

+

(
∂n
∂µ

+
1
τ

∂ν2

∂µ

)
µ̇+

n
τ
+
ν1

τ

Ṫ
T
+
ν3

τ

µ̇

T
− ν3

τ

µ

T2 Ṫ = 0. (47)
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If we compare the dynamical equations in these two theories along with the
conditions,

1 Zero bulk viscosity for ideal gas EoS.
2 No trace of the energy-momentum.

ε1 = τRT
∂ε

∂T
+ τRµ

∂ε

∂µ
= 3τRT

∂p
∂T

+ 3τRµ
∂p
∂µ

= 3τRTs + 3τRµn = 3τR(ε+ p) = 4τRε,

(48)

ε2 = τR(ε+ p) =
4
3
τRε, (49)

ε3 = τRT
∂ε

∂µ
= 3τRT

∂p
∂µ

= 3τRTn, (50)

π1 = τR(ε+ p) =
4
3
τRε, (51)

π2 =
1
3
τR(ε+ p) =

4
9
τRε, (52)

π3 = τRTn. (53)
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Thank You!
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Assume the background equilibrium state is homogeneous in space and the
background is Minkowski space time.
Background field variables have vanishing gradients.
Look only for exponential plane wave solutions to the perturbation equations,

δQ = δQ0 exp(ikx + Γt). (54)

The set of perturbation equation takes the form,

MA
BδYB = 0 (55)

δYB represents the list of fields which describe the perturbation of the fluid. MA
B

complex- valued matrix which describes the linearized equations of motion.
There will exist exponential plane-wave solutions whenever Γ and k have values
which satisfy the dispersion relation 23,

detM = 0. (56)

23Go back to main text
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IS theory
The main idea behind the Israel-Stewart formulation was to apply the second law
of thermodynamics to a more general expression of the non-equilibrium entropy
four-current.
A more realistic description of the entropy four-current can be obtained by
considering it to be a function not only of the primary fluid-dynamical variables,
but also of the dissipative currents.

Sµ = Pβµ + βνTµν − αNµ − Qµ(δNµ, δTµν) (57)

Up to second order in dissipative currents,

Sµ = suµ − αnµ − (β0Π
2 − β1nµnµ + β2πρσπ

ρσ)
uµ

2T

−(α0Π∆µν + α1π
µν)

nν
T

+O(δ3). (58)

The existence of second-order contributions to the entropy four-current in leads
to constitutive relations for the dissipative quantities which are different from
relativistic Navier-Stokes theory.
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In IS theory dissipative currents satisfy dynamical equations 24,25,

Π̇ +
Π

τΠ
= − 1

β0
[θ + βΠΠΠθ + α0∇µnµ + ψαnΠnµu̇µ + ψαΠnnµ∇µα

]
, (59)

ṅ⟨µ⟩ +
nµ

τn
=

1
β1

[
T∇µα− βnnnµθ + α0∇µΠ+ α1∇νπ

ν
µ + ψ̃αnΠΠu̇µ

+ ψ̃αΠnΠ∇µα+ χ̃απnπ
ν
µ∇να+ χ̃αnππ

ν
µu̇ν

]
(60)

π̇⟨µν⟩ +
πµν

τπ
=

1
β2

[
σµν − βππθπµν − α1∇⟨µnν⟩ − χαπnn⟨µ∇ν⟩α

− χαnπn⟨µu̇ν⟩

]
. (61)

These relaxation times indicate the time scales within which the dissipative
currents react to hydrodynamic gradients, in contrast to the relativistic
Navier-Stokes theory.

24W. Israel and J. M. Stewart, “Transient relativistic thermodynamics and kinetic theory,” Annals
Phys.118, 341 (1979).

25G. S. Denicol, H. Niemi, E. Molnar, and D. H. Rischke, Phys. Rev.D85(2012) 114047
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The hydrodynamic expansion is a gradient expansion.

Tµν = O(1) +O(∂) +O(∂2) + ...+O(∂k) + ..., (62)

Jµ = O(1) +O(∂) +O(∂2) + ...+O(∂k) + ..., (63)

where O(∂k) denotes the terms with k derivatives of T , uα, µ, for example the
O(∂2) contributions contain terms proportional to ∂2T , (∂T)2, (∂T)(∂u) etc.
Given a time like unit vector uµ, the energy-momentum tensor (Tµν) and the
current (Jµ) may be decomposed as,

Tµν = Euµuν + P∆µν + (Qµuν + Qνuµ) + T µν , Jµ = Nuµ + J µ; (64)

where Qµ, T µν , and J µ are transverse to uµ, and T µν is symmetric and
traceless.

Qµuµ = 0; T µνuµ = 0 = T µνuν ;J µuµ = 0; T µ
µ = 0; ∆µνuν = 0. (65)
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To the first order in the derivative expansion,

E = ϵ+ ε1
uλ∂λT

T
+ ε2(∂.u) + ε3uλ∂λ(µ/T) +O(∂2), (66)

P = p + π1
uλ∂λT

T
+ π2(∂.u) + π3uλ∂λ(µ/T) +O(∂2), (67)

Qµ = θ1u̇µ +
θ2

T
∆µλ∂λT + θ3∆

µλ∂λ(µ/T) +O(∂2), (68)

T µν = −ησµν +O(∂2), (69)

N = n + ν1
Ṫ
T
+ ν2(∂.u) + ν3uλ∂λ(µ/T) +O(∂2), (70)

J µ = γ1u̇µ +
γ2

T
∆µλ∂λT + γ3∆

µλ∂λ(µ/T) +O(∂2), (71)

At zero-derivative order, the constitutive relations are determined by the three
independent parameters ϵ, p, and n which in general all depend on T and µ.
At one-derivative order, there are sixteen transport coefficients (seven for
uncharged fluids) ε1,2,3, π1,2,3, θ1,2,3, ν1,2,3, γ1,2,3, and η, which in general all
depend on T and µ. Not all of the one-derivative transport coefficients are
physical.
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Out of equilibrium, the T , uα and µ are just auxiliary variables without
first-principles microscopic definition.
One can choose a different out-of-equilibrium choices of T , uα and µ.
Only criteria is that all these choices agree in equilibrium.
Given any choice of T , uα and µ, one can always redefine,

T ′ = T + δT;µ′ = µ+ δµ; u′α = uα + δuα. (72)

In terms of the redefinition of the fundamental hydrodynamic variables, E , P ,
Qµ, N , T µν and J µ all changes, but what remains unchanged are Tµν and Jµ.

E ′ = u′
µu′νTµν = E +O(∂2) (73)

P ′(T ′, µ′) = P(T, µ) + O(∂2) , (74)

Q′
µ(T

′, u′, µ′) = Qµ(T, u, µ)− (ϵ+p)δuµ + O(∂2) , (75)

T ′
µν(T

′, u′, µ′) = Tµν(T, u, µ) + O(∂2) , (76)

N ′(T ′, µ′) = N (T, µ) + O(∂2) , (77)

J ′
α(T

′, u′, µ′) = Jα(T, u, µ)− n δuα + O(∂2) . (78)
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We can also perform the most general first-order field redefinition,

δT = a1Ṫ/T + a2∂·u + a3uλ∂λ(µ/T) , (79)

δuµ = b1u̇µ + b2/T ∆µν∂νT + b3∆
µλ∂λ(µ/T) , (80)

δµ = c1Ṫ/T + c2∂·u + c3uλ∂λ(µ/T) , (81)

Under the most general first order field redefinition,

E ′(T ′, µ′, u′) = E(T, µ, u) +O(∂2)

=⇒ ϵ(T ′, µ′) + f ′ε = ϵ(T, µ) + fε +O(∂2)

=⇒ f ′ε = fε −
(
∂ϵ

∂T

)
δT −

(
∂ϵ

∂µ

)
δµ+O(∂2)

=⇒ ε1
Ṫ ′

T ′ + ε2∂λu′λ + ϵ3u′λ∂λ(µ′/T ′) = ε1
Ṫ
T
+ ε2∂λuλ + ϵ3uλ∂λ(µ/T)

−
(
∂ϵ

∂T

)[
a1

Ṫ
T
+ a2(∂.u) + a3uλ∂λ(µ/T)

]
−
(
∂ϵ

∂µ

)[
c1

Ṫ
T
+ c2(∂.u) + c3uλ∂λ(µ/T)

]
. (82)

ARPAN DAS (ifj) 7 / 15



The constitutive relations for Tµν and Jµ, written in terms of the new fields T ′,
u′, µ′, look the same as the constitutive relations in terms of the old fields T , u, µ,
with the following change:

εi → εi − ϵ,Tai − ϵ,µci , (83)
πi → πi − p,Tai − p,µci , (84)
νi → νi − n,Tai − n,µci , (85)
θi → θi − (ϵ+p)bi , (86)
γi → γi − nbi , (87)
η → η , (88)

It is clear that εi, πi, νi, θi, γi are not invariant under redefinition of the
fundamental variables. But one can construct some invariant quantities, e.g.

fi = πi −
(
∂p
∂ϵ

)
n
εi −

(
∂p
∂n

)
ϵ

νi. (89)

li ≡ γi −
n

ϵ+ p
θi. (90)

Only invariant transport quantities are, fi, li and η.
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It is clear that one can go to a new frame (by choosing ai and ci appropriately) in
which E = ϵ and N = n.

εi → εi −
(
∂ϵ

∂T

)
ai −

(
∂ϵ

∂µ

)
ci = 0, (91)

νi → νi −
(
∂n
∂T

)
ai −

(
∂n
∂µ

)
ci = 0. (92)

In this frame,

πi → πi −
(
∂p
∂T

)
ai −

(
∂p
∂µ

)
ci = πi − εi

(
∂p
∂ϵ

)
n
− νi

(
∂p
∂n

)
ϵ

= fi. (93)

If we choose bi =
θi

ϵ+p , then in the Landau frame θi = 0, =⇒ Qµ = 0 and in
this frame γi → γi − nbi = γi − n

ϵ+pθi = li.
In the Landau frame,

Tµν = ϵuµν +

(
p + f1

Ṫ
T
+ f2∂.u + f3uλ∂λ(µ/T)

)
∆µν − ησµν +O(∂2),

(94)

Jµ = nuµ + l1u̇µ +
l2
T
∆µλ∂λT + l3∆µλ∂λ(µ/T) +O(∂2). (95)
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Till now we only looked at the constitutive relations, but have not used on shell
conditions. the hydrodynamic equations themselves, ∂µTµν = 0, ∂µJµ = 0.
The conservation equations ∂µ(nuµ) + O(∂2) = 0 and
uν∂µ(ϵuµuν + p∆µν) + O(∂2) = 0 imply two “on-shell” relations among the
scalars Ṫ , ∂·u, and µ̇, up to O(∂2) terms.
Similarly, the projected energy-momentum conservation
∆α

ν ∂µ(ϵu
µuν + p∆µν) + O(∂2) = 0 implies one “on-shell” relation among the

vectors u̇α, ∆αλ∂λT , and ∆αλ∂λ(µ/T), up to O(∂2) terms

Tµν = ϵuµuν + [p − ζ(∂.u)]∆µν − ησµν +O(∂2), (96)

Jµ = nuµ − σT∆µλ∂λ(µ/T) + χT∆
µλ∂λT +O(∂2), (97)

with,

σ =
n

ϵ+ p
l1 −

l3
T
; χT =

1
T
(l2 − l1). (98)
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Study the linearized stability, T = T0 + δT , v = v0 + δv, µ = µ0 + δµ.
Look for plane wave solutions of the form, eik.x−iωt.
Solving the hydrodynamic equations ∂µTµν = 0, ∂µJµ = 0 with the general
constitutive relations, one finds the eigen frequencies ω(k) which depend on T0,
v0 and µ0, as well as on all the transport coefficients.
First-order hydrodynamics of uncharged fluids in the general frame we have six
transport coefficients: ε1,2, π1,2, θ ≡ θ1 = θ2, and η.
For charged fluids in the general frame one has a fourteen-dimensional
parameter space of transport coefficients, ε1,2,3, π1,2,3, ν1,2,3, θ ≡ θ1 = θ2, θ3,
γ ≡ γ1 = γ2, γ3, η.
One can also find a subspace in the fourteen-dimensional parameter space of
transport coefficients where a class of stable frames can be defined.
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In the IS sector we consider following equation for the Bjorken flow 26,27

Dϵ+ (ϵ+ p)θ − πµνσµν = 0, (99)

(ϵ+ p)Duµ −∆µ
λ∇

λP +∆µ
λ∇µπ

µλ = 0, (100)

τR∆
µν
αβDπαβ + δππθπ

µν + τππ∆
µν
αβπ

αλσβ
λ − 2τR∆

µν
αβπ

α
λω

βλ + πµν = 2ησµν .

(101)

D = uµ∇µ, θ = ∇µuµ, σµν = ∆µν
αβ∇αuβ , ωµν = (∆λ

µ∇λuν −∆λ
ν∇λuµ)/2.

For Bjorken flow, ds2 = dτ 2 − dx2 − dy2 − τ 2dξ2, τ =
√

t2 − τ 2,
ξ = Tanh−1(z/t), uµ = (1, 0, 0, 0), πµ

ν = diag(0,−π/2,−π/2, π),
δππ = 4/3τR, τππ = λτR.
For the IS theory hydrodynamic equation becomes,

dε
dτ

= −ε+ p
τ

+
π

τ
, (102)

τR
dπ
dτ

+ π =
4
3
η

τ
−
(

4
3
+ λ

)
τR
π

τ
, (103)

26Bjorken, J.D..Phys Rev1983,D27,140-151.
27G.S.Denicol and J. Noronha, arXiv:1711.01657
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More general case
IS theory in the presence of baryon number density,

ε̇+ (ε+ p)∂µuµ − πµνσµν = 0,
(ε+ p)u̇α −∇αp +∆α

ν ∂µπ
µν = 0,

ṅ + n∂µuµ + ∂µnµ = 0. (104)

π̇⟨µν⟩ +
πµν

τπ
= 2βπσµν + 2π⟨µ

γ ω
ν⟩γ − 4

3
πµνθ

− 10
7
π⟨µ
γ σ

ν⟩γ , (105)

ṅ⟨µ⟩ +
nµ

τn
= βn∇µα− nνω

νµ − nµθ − 3
5

nνσ
νµ

− 3βn

ε+ p
πµν∇να. (106)

Here ωµν ≡ (∇µuν −∇νuµ)/2 is the anti-symmetric vorticity tensor,
σµν ≡ 1

2 (∇
µuν +∇νuµ)− 1

3θ∆
µν , θ = ∂µuµ is the expansion scalar, α = µ/T ,

τπ = η/βπ , and τn = κn/βn. The quantity η is the shear viscosity coefficient, µ
and T denote baryon chemical potential and temperature respectively.
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Choice of fluid four velocity

The definition of fluid four velocity is crucial in dissipative fluids due to the
presence of both energy and particle diffusion,

1 Eckart definition: velocity is defined by the flow of particles:

Nµ = nuµ, nµ = 0. (107)

2 Landau definition: velocity is specified by the flow of the energy.

uµTµν = ϵuν =⇒ hµ = 0. (108)

3 In the Landau frame,

Tµν = ϵuµuν + (P +Π)∆µν + πµν , (109)

Nµ = nuµ + nµ. (110)

In order to derive the complete set of equations for dissipative fluid dynamics
along with the conservation equation we also need the dynamical or constitutive
relations satisfied by the dissipative tensors, Π, πµν and nµ.
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Different stages28:
1 Modelling the initial stages.
2 Bulk evolution of the locally thermalized medium.
3 Hadronic freezeout.

To model the bulk evolution of the strongly interacting matter produced in
relativistic heavy-ion collisions, relativistic dissipative hydrodynamics has
become the basic theoretical tool. 29, 30.

28https://wl33.web.rice.edu/research.html
29C. Gale, S. Jeon, B. Schenke, Int.J.Mod.Phys.A 28 (2013) 1340011
30S. Jeon, U. Heinz, Int.J.Mod.Phys.E 24 (2015) 10, 1530010.
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