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Motivation

Why do we study relativistic fluid dynamics? Heavy-ion collisions!
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Building a theory

e What are the necessary ingredients?
o Conservation laws
o Equation of state
o Relations for the dissipative currents
m Phenomenology or kinetic theory

e What are the minimal conditions a formalism must
satisfy?

o (Linear) stability of the equilibrium state



Linear stability analysis

How can we conclude if a given

formalism is suitable to ? o L_/,
describe relativistic fluids? / —

equilibrium
state

“Stable”



Ideal fluid dynamics

Conservation laws

9,N" =0 9, T =

net-charge conservation energy-momentum conservation
LV N | S LV
= = gu'w —N*P
Nt = nu*

Complete description using conservation laws + equation of state



Ideal fluids?

In general, there are no ideal fluids
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shear viscosity bulk viscosity diffusion

[Song @ CATHIE/TECHQM Workshop (2009)]

These effects must be taken into account in the equations -



Dissipative fluid dynamics

Conserved currents
shear-stress tensor
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- bulk viscous pressure
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net-charge diffusion

5 equations and 14 independent fields!
L} Constitutive relations g



Navier-Stokes theory
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e First-order theory

Eckart, Phys. Rev. (1940)
Landau & Lifshitz (1959)

e Dissipative currents in terms of the fluid-dynamical variables

e Acausal and unstable in the linear regime  icea sap aosey )

Hiscock & Lindblom, PRD (1987)



Israel-Stewart theory

7'7T7T<W/> 5% = 2?7AMV&‘5(9&U/3 4+ ... | . menlinear

Israel, Ann. Phys. (1976)
Israel & Stewart, Ann. Phys. (1979)

e Second-order theory

e Dissipative currents as dynamical variables

Olson & Hiscock, Ann. Phys (1989)

, . . . Olson, Ann. Phys (1990
e Linearly causal and stable in certain conditions — penie et ol 1. Phas G 2008)

Pu et. al., PRD (2010)
CVB & Denicol, PRD (2020)

e Widely used in numerical models
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Third-order fluid dynamics
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Jaiswal, PRC (2013)

Boltzmann equation

Relaxation Time Approximation (RTA)

Chapman-Enskog method

Only shear viscosity

P/P_

Acausal and unstable
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Third-order fluid dynamics
Converting gradients of shear-stress into an independent variable
viam) Vs

Equation of motion for the shear-stress tensor
TRt B i) = Ipot — 1 Vo o -

Introducing a relaxation equation

i , 3
I .
7,0 M prrd = S A 4 oponlinear terms
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CVB & Denicol, [arXiv:2107.10319] 12



Causality and stability

Israel-Stewart:

Pu et. al., PRD (2010)
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Third-order:

CVB & Denicol, [arXiv:2107.10319]
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Conclusions & Perspectives

The original third-order theory is linearly unstable
Stability implies the inclusion of a relaxation time scale
Constraints for the transport coefficients

Derivation of a complete nonlinear third-order theory

Analyze the effects of including bulk viscosity

Compare simulations with previous results

Thank you!
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