Linear transverse flow responses at small and large opacities in conformal kinetic theory

Clemens Werthmann¹

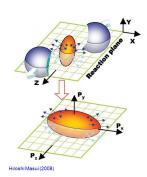
in Collaboration with Sören Schlichting 1 and Victor Ambrus 2

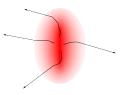
arXiv: 2109.03290 [hep-ph]

¹Bielefeld University, ²Goethe University Frankfurt

Aims of our Work

- describe spacetime evolution of QCD fireball created in a hadronic collision
- ightharpoonup examine how spatial anisotropies in the initial state (ϵ_n) dynamically create momentum anisotropies in the final state (v_n) in small vs. large systems
- small densities, large gradients: hydro not necessarily applicable; alternative: microscopic description in terms of kinetic theory
- employ simplified description in conformal kinetic theory to understand parametric dependences and differences of flow response in small and large systems





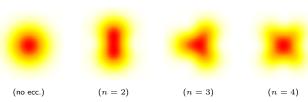
Quantifying Anisotropies

azimuthal momentum anisotropies are quantified in the "flow harmonics" defined as

$$\frac{\mathrm{d}N}{\mathrm{d}p_{\perp}\mathrm{d}\phi_p} = \frac{\mathrm{d}N}{2\pi\mathrm{d}p_{\perp}} \left(1 + 2\sum_{n=1}^{\infty} v_n(p_{\perp})\cos\left[n(\phi_p - \Psi_n)\right] \right) \tag{1}$$

- will consider p_{\perp} -weighted average of $v_n(p_{\perp})$
- lacktriangle models of the fireball dynamics relate the v_n to spatial anisotropies in the initial state
- **P** great correlation with x_{\perp}^n -weighted "eccentricities"; leading order: $v_n \propto \epsilon_n$

$$\epsilon_n = -\frac{\left\langle x_{\perp}^n \cos\left[n(\phi_r - \Psi_n)\right]\right\rangle_{\epsilon}}{\left\langle x_{\perp}^n \right\rangle_{\epsilon}} \tag{2}$$



microscopic description in terms of averaged on-shell phase-space distribution:

$$f(\tau, \mathbf{x}_{\perp}, \eta, \mathbf{p}_{\perp}, y) = \frac{(2\pi)^3}{\nu_{\text{eff}}} \frac{\mathrm{d}N}{\mathrm{d}^3 x \, \mathrm{d}^3 p} (\tau, \mathbf{x}_{\perp}, \eta, \mathbf{p}_{\perp}, y)$$
(3)

time evolution: Boltzmann equation in relaxation time approximation

$$p^{\mu}\partial_{\mu}f = C_{RTA}[f] = \frac{p_{\mu}u^{\mu}}{\tau_R}(f_{eq} - f) , \quad \tau_R = 5\frac{\eta}{s}T^{-1}$$
 (4)

- restriction to energy weighted degrees of freedom yields closed set of equations

$$\mathcal{F}(\tau, \mathbf{x}_{\perp}; \phi_p, v_z) \propto \int_0^\infty \mathrm{d}p^{\tau} (p^{\tau})^3 f(\tau, \mathbf{x}_{\perp}; p^{\tau}, \phi_p, v_z) \tag{5}$$

▶ specify initial energy density to be isotropic Gaussian with anisotropic perturbation

$$\epsilon(\tau_0, \mathbf{x}_\perp) = \frac{\mathrm{d}E_\perp^{(0)}}{\mathrm{d}\eta} \frac{1}{\pi R^2 \tau_0} \exp\left(-\frac{x_\perp^2}{R^2}\right) \left\{ 1 + \delta_n \, \exp\left(-\frac{x_\perp^2}{2R^2}\right) \left(\frac{x_\perp}{R}\right)^n \cos(n\phi_x) \right\} \tag{6}$$

Linearized Analytical and Numerical Desciption

- typical values of $\hat{\gamma}$
 - $\qquad \text{pp: } \hat{\gamma} \approx 0.88 \left(\frac{\eta/s}{0.16} \right)^{-1} \left(\frac{R}{0.4 \, \text{fm}} \right)^{1/4} \left(\frac{\text{dE}_{\perp}^{(0)}/\text{d}\eta}{5 \, \text{GeV}} \right)^{1/4} \left(\frac{\nu_{\text{eff}}}{40} \right)^{-1/4}$
 - PbPb: $\hat{\gamma} \approx 9.2 \, \left(\frac{\eta/s}{0.16}\right)^{-1} \left(\frac{R}{6\,\mathrm{fm}}\right)^{1/4} \left(\frac{\mathrm{d}E_1^{(0)}/\mathrm{d}\eta}{4000\,\mathrm{GeV}}\right)^{1/4} \left(\frac{\nu_{\mathrm{eff}}}{40}\right)^{-1/4}$
 - \Rightarrow treat problem both analytically (for small $\hat{\gamma}$) and numerically
- ▶ linearized analytical treatment
 - "opacity expansion" in number of scatterings

0th order :
$$p^{\mu}\partial_{\mu}f^{(0)} = 0$$
, 1st order : $p^{\mu}\partial_{\mu}f^{(1)} = C[f^{(0)}]$, etc...

Heiselberg, Levy PRC 59 (1999) 2716 Borghini, Gombeaud EPJC 71 (2011) 1612 Romatschke EPJC 78 (2018) 636 Kurkela, Wiedemann, Wu PLB 783 (2018) 274 Borghini, Feld, Kersting EPJC 78 (2018) 832 Kurkela, Mazeliauskas, Törnkvist arXiv:2104.08179

- \blacksquare to simplify coupling of isotropic and anisotropic part, we also linearize in δ_n
- numerical treatment:

fully nonlinear in $\hat{\gamma}$, ϵ_n , examine opacity dependence up to "hydro"-limit

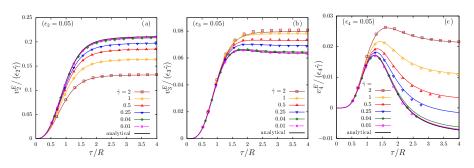
using two different codes that produce similar results

Kamata, Martinez, Plaschke, Ochsenfeld, Schlichting PRD 102 (2020) 056003

Ambrus, Blaga PRC 98 (2018) 035201

Numerical v_n -Results at small $\hat{\gamma}$ and Comparison

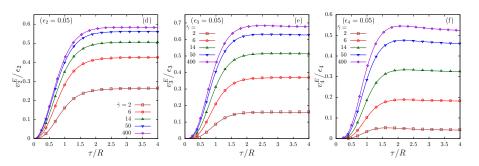
linear behaviour in ϵ_n , $\hat{\gamma} \Rightarrow$ flow harmonics normalized as $v_n/(\epsilon_n \hat{\gamma})$



- ▶ initial buildup: $0.5 \lesssim \tau/R \lesssim 1.5$, $v_2/\epsilon_2 > v_3/\epsilon_3 > v_4/\epsilon_4$, v_4 has strong negative late time trend
- small $\hat{\gamma}$: agreement with linearized result
- ▶ larger opacities: $v_2/\hat{\gamma}$ decreases, $v_3/\hat{\gamma}$, $v_4/\hat{\gamma}$ increase

Numerical v_n -Results at large $\hat{\gamma}$

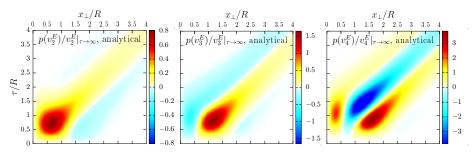
nonlinear in $\hat{\gamma} \Rightarrow$ flow harmonics normalized as v_n/ϵ_n



- ightharpoonup all v_n s increase with $\hat{\gamma}$
- ▶ simlar scales; curves have no strong distinctive features

Flow Production Rate at small $\hat{\gamma}$

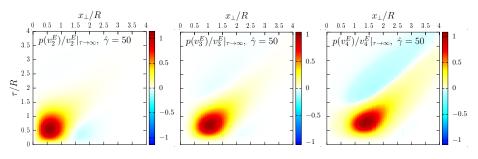
change in v_n only due to scatterings as rate in τ and density in x_\perp : $p(v_n) = \frac{\mathrm{d} v_n}{\mathrm{d} x_\perp \mathrm{d} \tau|_{\mathrm{coll}}}$



- ightharpoonup competing contributions to v_n with different signs from different regions
- lacktriangle this explains ordering of v_n 's and negative trend of v_4

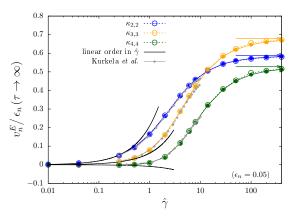
Flow Production rate at $\hat{\gamma}$ =50

change in v_n only due to scatterings as rate in τ and density in x_\perp : $p(v_n) = \frac{\mathrm{d} v_n}{\mathrm{d} x_\perp \mathrm{d} \tau|_{\mathrm{coll}}}$



weight mainly on a single positive contribution, other regions fade away

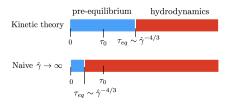
Opacity Dependence



- linear order results have different ranges of validity for different v_n due to peculiarities of small- $\hat{\gamma}$ -behaviour
- agreement with previous results in identical setup Kurkela, Taghavi, Wiedemann, Wu PLB 811 (2020) 135901
- \blacktriangleright extension to higher $\hat{\gamma}$, clear signs of saturation

Large Opacity Limit: Hydrodynamics?

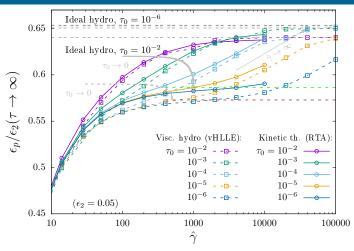
- expectation: in large opacity regime, approximately described by viscous (eventually ideal) hydrodynamics
- hydrodynamics describes pre-equilibrium stage differently than kinetic theory: free-streaming until $\tau_{\rm eq}/R \sim \hat{\gamma}^{-4/3}$, naively taking $\hat{\gamma} \to \infty$ at fixed τ_0 will cut this out



- investigate this by comparing to relativistic viscous hydrodynamics: VHLLE Karpenko, Huovinen, Bleicher Comput. Phys. Commun. 185, 3016 (2014)
- $ightharpoonup \hat{\gamma}$ ill-defined in $\tau_0 \to 0$ initialize at several finite τ_0
- ▶ instead of v_2 , compare ϵ_p :

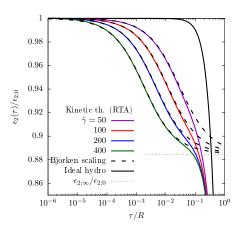
$$\epsilon_p = \frac{\int_{\mathbf{x}_{\perp}} T^{11} - T^{22} + 2iT^{12}}{\int_{\mathbf{x}_{\perp}} T^{11} + T^{22}} \tag{7}$$

Discrepancies in Comparison to Hydro



- discrepancy from cutting out pre-equilibrium period
 - lacktriangle need non-equilibrium description of early time dynamics even at large $\hat{\gamma}$
- lacktriangle small au_0 : curves plateau at physical large-opacity asymptote in the limit $au_0 o 0$
- fixed τ_0 : for $\tau_{eq} \lesssim \tau_0$, responses reach the (unphysical) ideal hydro limit $\hat{\gamma} \to \infty$

Eccentricity Evolution in pre-equilibrium Period



- due to inhomogeneous cooling, eccentricity decays in pre-equilibrium phase
- ightharpoonup normalization with ϵ_2 at onset of transverse expansion brings kinetic theory results into agreement with ideal hydro

Summary

- able to describe flow responses in full opacity range from linearized to saturated regime
 - features in small opacity results explained via production rate
- ▶ different description of pre-equilibrium stage introduces discrepancy with hydrodynamic results: limits $\tau_0 \to 0$ and $\hat{\gamma} \to \infty$ do not commute
 - pre-equilibrium phase decreases eccentricity

<u>Outlook:</u> comparison of wider range of different descriptions of the pre-equilibrium period for more realistic initial conditions

PDE Setup

coordinates:

$$\tau = \sqrt{t^2 - z^2}$$
 $\eta = \operatorname{artanh}(z/t)$ $y = \operatorname{artanh}(p_z/E)$

Boltzmann equation:

$$[\underbrace{p_T \cosh(y-\eta)}_{p^T} \partial_\tau + p_\perp^i \partial_i + \underbrace{\frac{p_T}{\tau} \sinh(y-\eta)}_{p^\eta} \partial_\eta] f = C[f]$$

initial condition:

$$f^{(0)}(\tau_0, \mathbf{x}_\perp, \mathbf{p}_\perp, y - \eta) = \frac{(2\pi)^3}{\nu_{eff}} \frac{\delta(y - \eta)}{\tau_0 p_\perp} F\left(\frac{Q_s(\mathbf{x}_\perp)}{p_\perp}\right)$$

position dependent momentum scale $Q_s(\mathbf{x}_\perp)$ chosen such that

$$\epsilon(\tau_0, \mathbf{x}_\perp) = \frac{\mathrm{d} E_\perp^{(0)}}{\mathrm{d} \eta} \frac{1}{\pi R^2 \tau_0} \exp\left(-\frac{\mathbf{x}_\perp^2}{R^2}\right) \left\{ 1 + \delta_n \left(\frac{x_\perp}{R}\right)^n \exp\left(-\frac{x_\perp^2}{2R^2}\right) \cos[n(\phi_x - \psi_n)] \right\}$$

Solutions in opacity expansion

zeroth order $p^{\mu}\partial_{\mu}f^{(0)}=0$:

$$f^{(0)}(\tau, \mathbf{x}_{\perp}, \mathbf{p}_{\perp}, y - \eta) = f^{(0)}\left(\tau_0, \mathbf{x}_{\perp} - \vec{v}_{\perp}t(\tau, \tau_0, y - \eta), \mathbf{p}_{\perp}, \operatorname{arsinh}\left(\frac{\tau}{\tau_0}\sinh(y - \eta)\right)\right)$$

first order $p^{\mu}\partial_{\mu}f^{(1)} = C[f^{(0)}]$:

$$f^{(1)}(\tau, \mathbf{x}_{\perp}, \mathbf{p}_{\perp}, y - \eta) = \int_{\tau_0}^{\tau} d\tau' \left(\frac{C[f^{(0)}]}{p^{\tau}} \right) \left(\tau', \mathbf{x}_{\perp}', \mathbf{p}_{\perp}, y - \eta' \right)$$

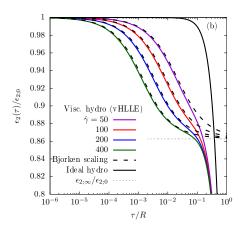
collision kernel: find local rest frame and temperature using Landau matching to compute $C_{RTA}[f^{(0)}] = \frac{p_\mu u^\mu T}{5\,\eta/s}(f_{eq}-f)$ where $f_{eq} = \frac{1}{\exp(p_\mu u^\mu/T)-1}$

$$T^{\mu\nu} = \nu_{eff}\tau \int \frac{d^3p}{(2\pi)^3 p^{\tau}} p^{\mu} p^{\nu} f^{(0)} \qquad \epsilon u^{\mu} = u_{\nu} T^{\nu\mu} \qquad \epsilon = \frac{\nu_{eff} \pi^2}{30} T^4$$

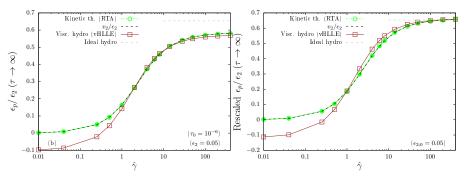
free-streamed $\delta\epsilon$ -cosine:

$$|\mathbf{x}_{\perp} - \mathbf{v}_{\perp} \Delta \tau|^n \cos(n\phi_{\mathbf{x}_{\perp} - \mathbf{v}_{\perp} \tau}) = \sum_{j=0}^n \binom{n}{j} x_T^{n-j} (-\tau)^j \cos[n\phi_{\mathbf{x}_{\perp}} + j(\phi_{\mathbf{x}_{\perp}} - \phi_{\mathbf{v}_{\perp}})]$$

Eccentricity Evolution in pre-equilibrium Period: Hydro



Rescaled results



▶ Rescaling could be done with ghat dependent factors.