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Aims of our Work
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I describe spacetime evolution of QCD fireball
created in a hadronic collision

I examine how spatial anisotropies in the initial
state (εn) dynamically create momentum
anisotropies in the final state (vn) in small vs.
large systems

I small densities, large gradients: hydro not
necessarily applicable; alternative: microscopic
description in terms of kinetic theory

I employ simplified description in conformal
kinetic theory to understand parametric
dependences and differences of flow response in
small and large systems
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Quantifying Anisotropies
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I azimuthal momentum anisotropies are quantified in the ”flow harmonics” defined as

dN

dp⊥dφp
=

dN

2πdp⊥

1 + 2

∞∑
n=1

vn(p⊥) cos
[
n(φp −Ψn)

] (1)

will consider p⊥-weighted average of vn(p⊥)

I models of the fireball dynamics relate the vn to spatial anisotropies in the initial state

I great correlation with xn⊥-weighted ”eccentricities”; leading order: vn ∝ εn

εn = −

〈
xn⊥ cos

[
n(φr −Ψn)

]〉
ε〈

xn⊥
〉
ε

(2)

(no ecc.) (n = 2) (n = 3) (n = 4)
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Setup
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I microscopic description in terms of averaged on-shell phase-space distribution:

f(τ,x⊥, η,p⊥, y) =
(2π)3

νeff

dN

d3x d3p
(τ,x⊥, η,p⊥, y) (3)

I time evolution: Boltzmann equation in relaxation time approximation

pµ∂µf = CRTA[f ] =
pµu

µ

τR
(feq − f) , τR = 5

η

s
T−1 (4)

time evolution depends on opacity γ̂
Kurkela, Wiedemann, Wu EPJC 79 (2019) 965

CRTA[f ] ∼ γ̂ =

(
5
η

s

)−1

 30

νeffπ2

1

π

dE
(0)
⊥

dη
R

1/4

restriction to energy weighted degrees of freedom yields closed set of equations

F(τ,x⊥;φp, vz) ∝
∫ ∞
0

dp
τ
(p
τ
)
3
f(τ,x⊥; p

τ
, φp, vz) (5)

I specify initial energy density to be isotropic Gaussian with anisotropic perturbation

ε(τ0,x⊥) =
dE

(0)
⊥

dη

1

πR2τ0
exp

(
−
x2
⊥
R2

)1 + δn exp

(
−
x2
⊥

2R2

)(
x⊥

R

)n
cos(nφx)

 (6)
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Linearized Analytical and Numerical Desciption
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I typical values of γ̂

pp: γ̂ ≈ 0.88
(
η/s
0.16

)−1 (
R

0.4 fm

)1/4 ( dE
(0)
⊥ /dη

5GeV

)1/4 ( νeff
40

)−1/4

PbPb: γ̂ ≈ 9.2
(
η/s
0.16

)−1 (
R

6 fm

)1/4 ( dE
(0)
⊥ /dη

4000GeV

)1/4 ( νeff
40

)−1/4

⇒ treat problem both analytically (for small γ̂) and numerically

I linearized analytical treatment
”opacity expansion” in number of scatterings

0th order : pµ∂µf
(0) = 0 , 1st order : pµ∂µf

(1) = C[f (0)] , etc...

Heiselberg, Levy PRC 59 (1999) 2716
Borghini, Gombeaud EPJC 71 (2011) 1612

Romatschke EPJC 78 (2018) 636
Kurkela, Wiedemann, Wu PLB 783 (2018) 274
Borghini, Feld, Kersting EPJC 78 (2018) 832
Kurkela, Mazeliauskas, Törnkvist arXiv:2104.08179

to simplify coupling of isotropic and anisotropic part, we also linearize in δn

I numerical treatment:
fully nonlinear in γ̂, εn, examine opacity dependence up to ”hydro”-limit

using two different codes that produce similar results

Kamata, Martinez, Plaschke, Ochsenfeld, Schlichting PRD 102 (2020) 056003

Ambrus, Blaga PRC 98 (2018) 035201
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Numerical vn-Results at small γ̂ and Comparison
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linear behaviour in εn, γ̂ ⇒ flow harmonics normalized as vn/(εnγ̂)
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I initial buildup: 0.5 . τ/R . 1.5,
v2/ε2 > v3/ε3 > v4/ε4,
v4 has strong negative late time trend

I small γ̂: agreement with linearized result

I larger opacities: v2/γ̂ decreases, v3/γ̂, v4/γ̂ increase
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Numerical vn-Results at large γ̂
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nonlinear in γ̂ ⇒ flow harmonics normalized as vn/εn
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I all vns increase with γ̂

I simlar scales; curves have no strong distinctive features
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Flow Production Rate at small γ̂
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change in vn only due to scatterings as rate in τ and density in x⊥: p(vn) = dvn
dx⊥dτ |coll
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I competing contributions to vn with different signs from different regions

I this explains ordering of vn’s and negative trend of v4
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Flow Production rate at γ̂=50
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change in vn only due to scatterings as rate in τ and density in x⊥: p(vn) = dvn
dx⊥dτ |coll
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I weight mainly on a single positive contribution, other regions fade away

Clemens Werthmann Flow response at small and large opacity Zimanyi School ‖ 07.12.2021 8/13



Opacity Dependence
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I linear order results have different ranges of validity for different vn due to
peculiarities of small-γ̂-behaviour

I agreement with previous results in identical setup
Kurkela, Taghavi, Wiedemann, Wu PLB 811 (2020) 135901

I extension to higher γ̂, clear signs of saturation
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Large Opacity Limit: Hydrodynamics?
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I expectation: in large opacity regime, approximately described by viscous (eventually
ideal) hydrodynamics

I hydrodynamics describes pre-equilibrium stage differently than kinetic theory: free-
streaming until τeq/R ∼ γ̂−4/3, naively taking γ̂ →∞ at fixed τ0 will cut this out

I investigate this by comparing to relativistic viscous hydrodynamics:
vHLLE Karpenko, Huovinen, Bleicher Comput. Phys. Commun. 185, 3016 (2014)

I γ̂ ill-defined in τ0 → 0 initialize at several finite τ0
I instead of v2, compare εp:

εp =

∫
x⊥

T 11 − T 22 + 2iT 12∫
x⊥

T 11 + T 22
(7)
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Discrepancies in Comparison to Hydro
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I discrepancy from cutting out pre-equilibrium period
need non-equilibrium description of early time dynamics even at large γ̂

I small τ0: curves plateau at physical large-opacity asymptote in the limit τ0 → 0

I fixed τ0: for τeq . τ0, responses reach the (unphysical) ideal hydro limit γ̂ →∞
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Eccentricity Evolution in pre-equilibrium Period
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I due to inhomogeneous cooling, eccentricity decays in pre-equilibrium phase

I normalization with ε2 at onset of transverse expansion brings kinetic theory results
into agreement with ideal hydro
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Summary
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I able to describe flow responses in full opacity range from linearized to saturated
regime

features in small opacity results explained via production rate

I different description of pre-equilibrium stage introduces discrepancy with
hydrodynamic results: limits τ0 → 0 and γ̂ →∞ do not commute

pre-equilibrium phase decreases eccentricity

Outlook: comparison of wider range of different descriptions of the pre-equilibrium
period for more realistic initial conditions

Clemens Werthmann Flow response at small and large opacity Zimanyi School ‖ 07.12.2021 13/13



Backup



PDE Setup
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coordinates:

τ =
√
t2 − z2 η = artanh(z/t) y = artanh(pz/E)

Boltzmann equation:

[ pT cosh(y − η)︸ ︷︷ ︸
pτ

∂τ + pi⊥∂i +
pT
τ

sinh(y − η)︸ ︷︷ ︸
pη

∂η]f = C[f ]

initial condition:

f (0)(τ0,x⊥,p⊥, y − η) =
(2π)3

νeff

δ(y − η)

τ0p⊥
F

(
Qs(x⊥)

p⊥

)

position dependent momentum scale Qs(x⊥) chosen such that

ε(τ0,x⊥) =
dE

(0)
⊥

dη

1

πR2τ0
exp

(
−
x⊥

2

R2

)1 + δn

(
x⊥
R

)n
exp

(
−
x2
⊥

2R2

)
cos[n(φx − ψn)]


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Solutions in opacity expansion
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zeroth order pµ∂µf
(0) = 0:

f (0)(τ,x⊥,p⊥, y − η) = f (0)

(
τ0,x⊥ − ~v⊥t(τ, τ0, y − η),p⊥, arsinh

(
τ

τ0
sinh(y − η)

))

first order pµ∂µf
(1) = C[f (0)]:

f (1)(τ,x⊥,p⊥, y − η) =

∫ τ

τ0

dτ ′
(
C[f (0)]

pτ

)(
τ ′,x⊥

′,p⊥, y − η′
)

collision kernel: find local rest frame and temperature using Landau matching to

compute CRTA[f (0)] =
pµu

µT

5 η/s
(feq − f) where feq = 1

exp(pµuµ/T )−1

Tµν = νeffτ

∫
d3p

(2π)3pτ
pµpνf (0) εuµ = uνT

νµ ε =
νeffπ

2

30
T 4

free-streamed δε-cosine:

|x⊥ − v⊥∆τ |n cos(nφx⊥−v⊥τ ) =
n∑
j=0

(
n

j

)
xn−jT (−τ)j cos[nφx⊥ + j(φx⊥ − φv⊥)]
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Eccentricity Evolution in pre-equilibrium Period: Hydro
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Rescaled results
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I Rescaling could be done with ghat dependent factors.
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