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Ohm’s Law from the Vlasov Boltzmann Equation

Using the Vlasov-Boltzmann equation for each quark flavor one can calculate the induced

electromagnetic current in linear response and identify the polarization tensor 11%(k) M. Formanek, C.
Grayson, J. Rafelski and B. Muller, Annals Phys. 434, 168605 (2021)
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Where II4(k) Is the polarization tensor fﬁld(k) is the fourier transformed induced current in
the medium and 4*(k) is the fourier transformed perturbing 4-potential of the colliding ions.
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Electromagnetic Polarization Tensor: Infinite Medium

The polarization tensor for an infinite homogeneous plasma is composed of two independent
response functions which can be found by projecting onto k and considering longitudinal and
transverse polarization functions.
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Estimating Quark-Quark Collision Rate

To get a perturbative estimate of x we multiply the parton-quark
transport cross section by the parton density, (Mrowczynski, Acta Phys.

Where we model how the strong coupling varies with temperature

Polon 1988)
RQCD) = —=
(QceD) 13673
using a fit.
e (T) e —22l00)

T 14+ CWn(T/Te)

as = g% /4m

(Hadrons and Quark Gluon plasma,

Letessier, J.,Rafelski 2002)

QCD, hadronic structure and high temperature

0.7

0.6 I\

0.4

0.3

0.2

0.1

0

5(9N; +16)¢(3)g* In(47/g*)T

TC = 160 MeV
O(3<Tc) =0.5

Tc=160Mev ="
mp@epy =" ]

100 200 300 400 500
T(MeV)

Plot of the QED debye mass and the QCD

dampening rate x as a function of temperature

7.0f
6.5
6.0F
5.5¢
5.0f
4.5
4.0F

K/mp

100 200 300 400 500
T(MeV)

Plot of the ratio of the QCD dampening rate x
to the QED debye mass as a function of temperature,
At temperature 300 MeV used in the plots below,
k=4.86mp



Estimating Quark-Quark Collision Rate

To get a rough estimate of k we multiply the parton-quark transport
cross section by the parton density, (Mrowczynski, Acta Phys. Polon 1988)

1
QD) = 1363

Where we have also included that the coupling is a function of

temperature

_ as(Te)
Qg (T) ] 3 Cln(T/TC’)

as = g% /4m

(Hadrons and Quark Gluon plasma,
Letessier, J.,Rafelski 2002)
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Free Charge Distribution

For simplicity we prescribe the external fields using a gaussian charge distribution

normalized to the radius and charge of the nucleus.
Au-Au CollisionZ=79, ys =10.GeV, ct=-2.12A,;,b=1.R

Free Charge in Position Space
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Induced Fields and currents

In order to calculate the induced charge and field using the longitudinal and transverse
response functions one must project vector perturbations onto k

~ - k-A. ~ k - ;1 Then solving maxwell's equations in projected
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Magnetic Field of Heavy lon Collisions at the Origin,

Electric field is shown in supplemental slides k; HT
W, —1—
Au-Au Collision Z = 79., s = 200. GeV,b=4.5 A, or(w, k) = W
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Induced Charge - (Single Nuclei) i

-

Plot below shows a single ion traveling through the plasma. A trailing negatively

charged wake is shown trailing behind the positive lon.
y 5,Z2=79., T=300. MeV, mp =74.2 MeV
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Induced Charge

Z=179., T=300. MeV, mp=74.1857 MeV

External ]
----- Induced ]
----- = Total

i As yincreases the external charge density is contracted

i (grows large in magnitude but smaller in space).The

E functional dependence of the tail changes little so appears
i to be small and more smeared out at high gamma.
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Induced Charge

As yincreases the external charge density is contracted
(grows large in magnitude but smaller in space).The
functional dependence of the tail changes little so appears

y=95,2=79.,T=300. MeV, mp =74.1857 MeV i
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Outlook: Just at the Beginning

e QGP Switch-On and Evolution: In order to accurately model in space and time

QGP we would like to create a realistic spacetime picture of the plasma.
o This can be done by adding a source to the neutral plasma in the boltzmann equation

- 0) @)+ 075, 2L = (| o) = )|+ :

eq e e e e e e e e e e e

The leads to a convolution integral in Ohm’s Law of the form,

~ dw’ ~ where
: — T TIM 1 . / ! ‘
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t>0 )
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Electric Field

Au-Au Collision Z = 79.,
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Transverse electric field is
| suppressed.
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Electric Field

Au-Au Collision Z=79., 4/s =200. GeV, b =4.5 A,
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Fields of Colliding lons

(n— ) fnx ((n—p)xp)
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Figure 19: Here we see the fields and gauge potential of two colliding Pb ions at v = 37 (about 74 GeV
per nucleon pair in the CM frame) and impact parameter b = 3R where the ions are separated by
Ax = 28ct = 1Ay, where )\, is the muon Compton wavelength, approximately 1.87 fm. At this collision
energy the potential of the ions surpasses 2m,, over a distance larger than the muon compton wavelength
A The lorentz contracted nuclei are indicated by black surfaces traveling in the x direction (collision
axis). (a) the potential is plotted in units of m, in the xy-plane (collision plane) and the electric field
vectors are shown in units T—:‘ where in these units the Schwinger field eEs = 1';\—:‘A The 2m,, barrier,
at which the Dirac equation predicts boundstates to dive in to the negative continuum, [110] is indicated
by a gray surface.
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Charge Conservation in the Infinite Plasma

In the case of an infinite plasma in both space and time the induced charge
balancing the induced screening charges has moves to infinity.

Z=79, T =300.MeV, mp = 74.1857 MeV_ Z=79., T =300.MeV, mp = 74.1857 MeV
External External
----- Induced ] Induced A
..... = Total = Total
T 1000 Static Gaussian Charge Z = 79.
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. -0.10 % 10°
0 2 4 6 8 10 12 14 0 2 4 6 8 10 12 14 100
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Plasma Frequency

We can use the dispersion relation to solve for the natural oscillations of the
effective particles within the plasma i.e. plasmons, This is done by solving the
dispersion relation in the limit k—0,

1 .
(k- ) (- u)2 + oIl (k) (k* + polly(k))? =0
for both modes one finds.
— K 2 Kz 2 m%
a)——lii a)p—z Where wp:T

For an oscillatory electric field, these modes are damped by the relaxation

parameter
gt o _ Epdity w2 B2
E = Epe > B = Epe 2 P4
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Susceptibility . z
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FIG. 3. Longitudinal susceptibility xz(w,k) in units of m}, for & = 0.1mp. Left panel: real part of xr(w,k); right panel:
imaginary part of xr(w,k).
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FIG. 4. Transverse susceptibility xr(w, k) in units of m% for kK = 0.1mp. Left panel: real part of xr(w,k); right panel:

imaginary part of xr(w, k).
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15 (w, k)

" " ’I:
Conductivity o7 (w, k) = —i
w
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k:OmD ] ) k=0mD ]
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FIG. 7. Real part of o1, for different values of k.

FIG. 8. Real part of o for different values of k.

Discontinuity at k = 0 comes from infinite extent of
plasma (Baranger 1989)
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Modes - Dispersion Relation

: Longitudinal Modes: Electric Charge Oscillations —
, Langmuir waves (density fluctuations), Debye screening

I (charge screening)

Re[w]/wp

Finte K

Re[w]/wp

Longitudinal Mode ]

Transverse Mode

25 30

20

Negative
imaginary part
means modes are

Transverse Modes: Current Oscillations —
Electromagnetic waves in vacuum
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Modes - Dispersion Relation

lnw—I—m—{— k|
((k - u)? + polly (w, k))(k2 + pollp(w, k))2 =0 w+ ik — |K|

L _ ) . !
: Long/t_ud/nal Modes: _Electr/c Charge Oscillations - Transverse Modes: Current Oscillations —
, Langmuir waves (density fluctuations), Debye screening : Electromagnetic waves in vacuum

I (charge screening) :
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