# Non-decay photon HBT analysis in Ag+Ag@1.58 A GeV collisions at the HADES experiment

Mateusz Grunwald







POLITECHNIKA WARSZAWSKA

# (very) Basics of femtoscopy



Typical size:  $R \sim 10^{-15}$  m Typical lifetime:  $\tau \sim 10^{-23}$  s



No direct measurements available!



Femtoscopic (HBT) correlations



Experimental correlation function



Source: Hanna Paulina Zbroszczyk, "Eksperymentalne aspekty badania korelacji femtoskopowych w zderzeniach relatywistycznych ciężkich jonów".

$$CF(Q_{inv}) = \frac{Signal(Q_{inv})}{Background(Q_{inv})}$$

$$Q_{inv} = \sqrt{(\mathbf{p_1} - \mathbf{p_2})^2 - (E_1 - E_2)^2}$$

# Non-decay photon correlations (pros)



Photons being cool Source: https://pl.pinterest.com/pin/547539267174048711/

- Clear and undistorted information (due to lack of interaction).
- Access to various stages of collision.
- Simple correlation function parametrization (only QS).



Photon emission during collisions
Source: J. Stachel. K. Reygers, QGP physics SS2015 6., "Space-time evolution of the QGP"



# Non-decay photon correlations (cons)



Photons having issues Source: https://pl.pinterest.com/pin/547539267174048711/

You Yn Yn

Photon distinguishment problem

Source: https://www.fortressofsolitude.co.za/top-10-hilarious-spider-man-memes/

- **Hard to detect** (due to lack of interaction).
- Main source of photons: π<sup>0</sup> decay
- Hard to distinguish (decay from non-decay)
- Less non-decay photons at low energies



# Non-decay photon correlations previous attempts

#### **Simulations**

SPS, Pb+Pb @ 158 GeV, model using the inputs reproducing the Pb+Pb @ 158 GeV, measured single photon spectra



Source: Evan Frodermann, Ulrich Heinz, "Photon HBT interferometry for non-central heavy-ion collisions", arXiv: 0907.1292v2

# parton cansade model



Source: "Intensity interferometry of thermal photons from relativistic heavy ion collisions". Dinesh Kumar Srivastava, https://arxiv.org/pdf/nucl-th/0411041.pdf

#### Real data

#### RHIC, Au+Au @ 62.4 GeV



Source: "Preliminary Results on Direct Photon-Photon HBT Measurements in  $\sqrt{S_{NN}}$  = 62.4 GeV and 200 GeV Au+Au Collisions at RHIC", Debasish Das et al., https://arxiv.org/pdf/nucl-ex/0511055.pdf

#### WA98, Pb+Pb @ 158 GeV



FIG. 1. The two-photon correlation function for narrow showers with  $L_{\min} > 20$  cm (diamonds) and average photon momenta  $100 < K_T < 200 \text{ MeV}/c$  (top) and  $200 < K_T <$ 300 MeV/c (bottom) fitted with Eq. (1). The solid line shows the fit result in the fit region used (excluding the  $\pi^0$  peak at  $Q_{\rm inv} \approx m_{\pi^0}$ ) and the dotted line shows the extrapolation into the low  $Q_{inv}$  region where backgrounds are large.

# The HADES experiment



- Fixed target experiment,
   1-2 A GeV beam kinetic energy.
- Measurement of **light vector mesons**, decaying into dilepton pairs  $(\rho, \omega, \varphi)$ .
- High angular acceptance  $(0<\phi<2\pi, 18^{\circ}<\theta<85^{\circ})$ , split into 6 sectors.
- High e<sup>±</sup> reconstruction efficiency and π<sup>±</sup>/p<sup>+</sup> separation (RICH, TOF/RPC + MDC, ECAL[since 2019]).



HADES subsystems visualization Source: Mateusz Wasiluk, "Particle identification using machine learning at the HADES experiment"



HADES cross-section
Source: https://www-hades.gsi.de

## Photon detection in HADES

## PCM (photon conversion method)



- + High acceptance of e<sup>±</sup> in HADES
- + High momentum resolution
- Low statistics due to conversion probability
- e<sup>±</sup> close track effects (splitting/merging)

## **Ecal detection (direct)**



Electromagnetic callorimeter visualisation

Source: Electromagnetic and hadronic calorimeters, Silvia Masciocchi, GSI Darmstadt and University of Heidelberg

- + Easy detection of photons
- + High statistics
- Only half sectors working during beamtime
- Poor seperation of photons with opening angle  $\alpha_{vv}$ <4° (merging-like problem)

# Splitting/Merging explanation



**Splitting** = 1 track recostructed as 2 with small momentum difference/opening angle

Merging = 2 tracks with small momentum difference/opening angle reconstructed as 1

# Reconstructed photons per event (real data)

#### Number of conversion $\gamma$ per event



#### Number of ECAL $\gamma$ per event



# Correlation functions (real data)

### 2 conversion photons



#### 2 ECAL photons



#### conversion + ECAL photon











# Correlation functions, non-decay region (real data)



signal function below

20 MeV/c)

some splitting present

# Plausible reasons of observed effects (simulated data)

## Conversion:





 $\sqrt{S_{NN}} = 2.41$  GeV measured with HADES, Dresden 2020

### ECAL:



# Ongoing improvements and ideas

- New  $e^{\pm}$  and conversion γ selection, suppressing close track effects (in progress).
- $\rightarrow \eta \rightarrow \gamma \gamma$  selection for ECAL photons (and Mix).
- Correction of  $\alpha_{yy}$ <4° ECAL merging (already done).
- If rich structures in CF would be after splitting/merging correction -> new CF parametrization (non-gaussian).