Emission asymmetry seen by the femtoscopy

Paweł Szymański

Pawel.Szymanski1@pw.edu.pl

NATIONAL SCIENCE CENTRE

ZIMÁNYI SCHOOL 2021

Budapest, Hungary, December 6 - 10, 2021

Impossible to examine the particle emitting source directly

> size $\sim 10^{-15}$ m life time $\sim 10^{-23}$ s

Femtoscopy measures space-time characteristics of the source through momentum correlations

Theoretical Models

THERMINATOR 2

- Generates collisions of relativistic ions
- Implements thermal models of particle production with single freeze-out
- Adapted Blast-Wave model for BES energies

THERMINATOR 2: THERMal heavy IoN generATOR 2

Comput.Phys.Commun. 174 (2006) 669-687 M. Chojnacki, A. Kisiel, W. Florkowski, W. Broniowski

Adaptation of the therminator model for BES program Proc.SPIE 11581 (2020) 1158104, H. Zbroszczyk

UrQMD

Microscopic transport theory based on the covariant propagation of all hadrons on classical trajectories in combination with:

- Stochastic binary scatterings
- Color string formation
- Resonance decay

Relativistic Hadron-Hadron Collisions in the Ultra-Relativistic Quantum Molecular Dynamics Model (UrQMD)

J. Phys. G: Nucl. Part. Phys. 25 (1999) 1859, M. Bleicher $et\ al$

Collective behavior – radial flow in the transverse plane: matter is collectively moving "outward" from the central axis of the source to the outside

Ann. Rev. Nucl. Part. Sci 55, 357 (2005)

Collective behavior – radial flow in the transverse plane: matter is collectively moving "outward" from the central axis of the source to the outside

 β_f - flow velocity β_t - thermal velocity (with random direction)

Nonidentical-particle femtoscopy at $\sqrt{s_{NN}} = 200 \text{ GeV}$ in hydrodynamics with statistical hadronization, A. Kisiel

Space-momentum (x-p) correlation: direction ϕ_f of transverse velocity is aligned with transverse position vector direction ϕ_r

Collective behavior – radial flow in the transverse plane: matter is collectively moving "outward" from the central axis of the source to the outside

 β_f - flow velocity β_t - thermal velocity (with random direction)

The thermal component has a smaller impact on heavier particles

Nonidentical-particle femtoscopy at $\sqrt{s_{NN}} = 200 \text{ GeV}$ in hydrodynamics with statistical hadronization, A. Kisiel

The final velocity direction of lighter particles, on average, is less correlated with emission points than that of heavier particles

Collective behavior – radial flow in the transverse plane: matter is collectively moving "outward" from the central axis of the source to the outside

 β_f - flow velocity β_t - thermal velocity (with random direction)

Nonidentical-particle femtoscopy at $\sqrt{s_{NN}} = 200 \text{ GeV}$ in hydrodynamics with statistical hadronization, A. Kisiel

Emission asymmetry arises in a system where both thermal and collective velocities exist and are comparable in magnitude

Paweł Szymański (WUT)

Emission asymmetry

08.12.2021 4 / 20

XY coordinates of creation (all particles)

XY coordinates of creation (primary particles)

XY coordinates of freeze-out (all particles)

UrQMD, 39 GeV

- x_{out} parallel to particle transverse momentum
- x_{side} perpendicular to particle transverse momentum
- z no change

Rotate emission vector \vec{x} by momentum \vec{p} azimuth angle:

TLorentzVector X(Particle.x ,Particle.y, Particle.z, Particle.t); TLorentzVector P(Particle.px ,Particle.py, Particle.pz, Particle.e); X.RotateZ(-P.Phi());

x_{out} - x_{side} coordinates of creation (all particles)

$< y_{\pi} > = -0.01$
$< y_K > = 0.01$
$< y_p > = 0.00$

Therminator 2, 39 GeV

x_{out} - x_{side} coordinates of creation (primary particles)

 $< x_K >= 4.04$ $< x_p >= 4.69$

Therminator 2, 39 GeV

x_{out} - x_{side} coordinates of creation (all particles)

$< x_{\pi} > = 7.76$	$< y_{\pi} > = -0.01$
$< x_K > = 7.66$	$< y_K > = 0.00$
$\langle x_p \rangle = 11.47$	$\langle y_p \rangle = -0.01$

UrQMD, 39 GeV

Reference frame

Pair Rest Frame (PRF)

$$k_T = \frac{|p_{T,1} + p_{T,2}|}{2}$$

Non-identical particle combinations

 $t_1 = t_2$

 $\Delta r \neq 0$

t — emission time

 \mathbf{r} — emission point distance from the center

R. Lednicky, et al., Phys. Lett. B373, 30-34 (1996) Space asymmetry

 V_1

 V_2

Catching up

 $t_1 = t_2 \\ \Delta r \neq 0$

Run away

Catching up longer interaction, strong correlation Running away shorter interaction, weaker correlation CFs are calculated in two groups of pairs:

- $C_+(k^*)$ pions catch up with kaons
- $C_{-}(k^{*})$ pions move away from kaons

 C_+ shows a larger deviation from unity than $C_- \to$ pions and kaons are not emitted at the same place and/or time

 C_+ and C_- are identical \rightarrow the average space-time emission points of pions and kaons

$\pi^+ K^+ @ 39$ GeV, Therminator 2

Paweł Szymański (WUT)

Emission asymmetry

08.12.2021 15/20

$\pi^+ K^+ @ 39$ GeV, Therminator 2

$\pi^+ K^+ @ 39$ GeV, Therminator 2

Paweł Szymański (WUT)

Emission asymmetry

08.12.2021 16 / 20

 $\pi^+ K^+$ femtoscopy @ 39 GeV

$\pi^+ K^+$ femtoscopy @ 39 GeV

$\pi^+ K^+$ femtoscopy @ 39 GeV, Therminator 2

Paweł Szymański (WUT)

08.12.2021 19/20

$\pi^+ K^+$ femtoscopy @ 39 GeV, Therminator 2

$\pi^+ K^+$ femtoscopy @ 39 GeV, Therminator 2

Summary

- Emission asymmetry is seen by theoretical models (Therminator 2, UrQMD)
- Asymmetry is enhanced by particles coming from decays
 - decays are not the only source of such asymmetry
 - ▶ main source is collective behavior

More in: Nonidentical-particle femtoscopy at $\sqrt{s_{NN}} = 200 GeV$ in hydrodynamics with statistical hadronization, A. Kisiel

Summary

- Emission asymmetry is seen by theoretical models (Therminator 2, UrQMD)
- Asymmetry is enhanced by particles coming from decays
 - decays are not the only source of such asymmetry
 - ▶ main source is collective behavior

More in: Nonidentical-particle femtoscopy at $\sqrt{s_{NN}} = 200 GeV$ in hydrodynamics with statistical hadronization, A. Kisiel

Thank you for your attention!

BACKUP

	<u> </u>	$x_{out} [\rm{fm/c}]$	$r_{out} [\rm fm/c]$	$\Delta t [\mathrm{fm/c}]$	$r_{out}^* [\mathrm{fm/c}]$
$\pi^+ K^+$	π^+	3.64	1 1 1	0.47	-1.69
	K^+	5.00	-1.11	0.47	-1.03
$\pi^+ p$	π^+	2.45	_2 /9	3 50	-5 70
	p	5.00	-2.45	5.50	-0.10
K^+p	K^+	3.11	-1.56	2 79	-3.82
	p	4.70	-1.00	2.15	0.02

All particles, Therminator 2 @ 39 GeV, 0-5 % centrality

Primary particles, Therminator 2 @ 39 GeV, 0-5 % centrality

		$x_{out} [\rm{fm/c}]$	$r_{out} [\rm{fm/c}]$	$\Delta t \; [\mathrm{fm/c}]$	$r_{out}^* [\rm{fm/c}]$	
$\pi^+ K^+$	π^+	2.31	0.57	0.57	0.36	1.04
	K^+	2.89	-0.57	0.50	-1.04	
$\pi^+ p$	π^+	1.57	9.44	0.72	3 61	
	p	4.00	-2.44	-2.44	0.72	-5.01
K^+p	K^+	1.85	1.05	0.36	2 56	
	p	3.81	-1.90	0.50	-2.50	

Therminator 2

$\pi^+ p$ @ 39 GeV

Paweł Szymański (WUT)

Emission asymmetry

08.12.2021 23 / 20

$\pi^+ p$, Therminator 2

Paweł Szymański (WUT)

Emission asymmetry

08.12.2021 24 / 20

 $\pi^+ p$

 $\pi^+ p$

Paweł Szymański (WUT)

Emission asymmetry

08.12.2021 25 / 20

$\pi^+ p$ femtoscopy

$\pi^+ p$ femtoscopy

$\pi^+ p$ femtoscopy

08.12.2021 26 / 20

Therminator 2

K^+p @ 39 GeV

Paweł Szymański (WUT)

Emission asymmetry

08.12.2021 27 / 20

K^+p , Therminator 2

Paweł Szymański (WUT)

Emission asymmetry

08.12.2021 28 / 20

 K^+p

 K^+p

Paweł Szymański (WUT)

Emission asymmetry

08.12.2021 29 / 20

K^+p femtoscopy

08.12.2021 30 / 20

K^+p femtoscopy

K^+p femtoscopy

08.12.2021 30 / 20

UrQMD

$\pi^+ K^+$ @ 39 GeV

Paweł Szymański (WUT)

Emission asymmetry

08.12.2021 31/20

$\pi^+ K^+$, UrQMD

08.12.2021 32/20

$\pi^+ K^+$, UrQMD

$\pi^+ K^+$, UrQMD

Paweł Szymański (WUT)

Emission asymmetry

08.12.2021 32/20

$\pi^+ K^+$ femtoscopy, UrQMD

Paweł Szymański (WUT)

$\pi^+ K^+$ femtoscopy, UrQMD

