# Quark-hadron continuity for neutron stars

#### Toru Kojo

(Central China Normal University)

```
Refs) Baym-Hatsuda-TK-Powell-Song-Takatsuka (2018): review
```

- TK (2021): mini-review, AAPPS Bull. 31 (2021) 1, 11
- TK (2021): cs2 peak, PRD104 (2021); TK-Suenaga: 2110.02100
- TK-Baym-Hatsuda (2021): QHC21 EOS, 2111.11919



#### **State of matter: overview**

- few meson exchange
- nucleons only



ab-initio nuclear cal.

laboratory experiments

steady progress

~ I.4 M<sub>•</sub>

- · many-quark exchange
- structural change,...
- hyperons, ∠, ...



#### most difficult

(d.o.f??)



[Masuda+ '12; TK+ '14]

- Baryons overlap
- · Quark Fermi sea



#### strongly correlated

(d.o.f : quasi-particles??)

not explored well



[Freedman-McLerran, Kurkela+, Fujimoto+...]

 $n_B$ 

Hints from NS

~ 5n<sub>0</sub>

 $\sim 40 n_0$ 

~ 2n<sub>0</sub>

#### **EoS** & Neutron Star M-R relation







## **Observations: summary**

(2010-)

[Miller+ '21]



# Soft to stiff is challenging: a new quality

sound velocity:  $c_s^2 = dP/d\epsilon < I$  (causality)



nuclear & quark physics constrain each other





**baseline**: quark-hadron continuity (QHC)







crossover

# Quark-Hadron-Continuity EoS

# Direct descriptions for 2-5n<sub>0</sub>?



### **Strategy**

Follow quark states from nuclear to quark matter

(within a single model, e.g., percolation model, Fukushima-TK-Weise '20)

### Quarks in a baryon

 $N_c$  (=3): number of colors

probability density:

$$Q_{
m in}(oldsymbol{p},oldsymbol{P}_B)=\mathcal{N}\mathrm{e}^{-rac{1}{\Lambda^2}\left(oldsymbol{p}-rac{oldsymbol{P}_B}{N_{
m c}}
ight)^2}$$





mean: 
$$\langle \boldsymbol{P}_B \rangle = N_{\rm c} \int_{\boldsymbol{p}} \boldsymbol{p} Q_{\rm in}(\boldsymbol{p}, \boldsymbol{P}_B)$$

variance: 
$$\left\langle \left( m{p} - \frac{m{P}_B}{N_{
m c}} \right)^2 \right
angle \sim \Lambda^2$$
 energetic!

$$\langle E_q(\boldsymbol{p})\rangle_{\underline{\boldsymbol{P}_B}} = \mathcal{N} \int_{\boldsymbol{p}} E_q(\boldsymbol{p}) e^{-\frac{1}{\Lambda^2} \left(\boldsymbol{p} - \frac{\boldsymbol{P}_B}{N_c}\right)^2} \simeq \langle E_q(\boldsymbol{p})\rangle_{\boldsymbol{P}_B=0} + \frac{1}{6} \left\langle \frac{\partial^2 E_q}{\partial p_i \partial p_i} \right\rangle_{\boldsymbol{P}_B=0} \left(\frac{\boldsymbol{P}_B}{N_c}\right)^2 + \cdots$$

average energy (quark)

$$\sim N_c E_q \gg \sim P_B^2 / (N_c E_q)$$
baryon mass baryon kin. energy

#### A new unified model for QHC

cf) [TK '21, TK-Suenaga '21]

occupation **probability** of **quark** state with p

occupation **probability** of **baryon** state with P<sub>B</sub>

quark mom. distribution in a baryon

$$f_q(\underline{p}; n_B) = \int_{\boldsymbol{P}_B} \mathcal{B}(\underline{P}_B; n_B) Q_{\text{in}}(\underline{\boldsymbol{p}}, \underline{\boldsymbol{P}}_B)$$

e.g.) in ideal baryonic matter







#### Evolution of occ. probabilities

$$f_q(p; n_B) = \int_{\boldsymbol{P}_B} \mathcal{B}(P_B; n_B) Q_{\mathrm{in}}(\boldsymbol{p}, \boldsymbol{P}_B)$$



"quark saturation" constraint

 $\rightarrow$  relativistic baryons at low density,  $n_B \sim 1-3n_0!$ 

cf) McLerran-Reddy model (2018) of quarkyonic matter

### **Peak** in sound velocity



"inevitable" stiffening





## **Peak** in sound velocity





0.1

0.2

 $p \, [\mathrm{GeV}]$ 

0.5

0.6

 $c_s^2 = dP/d\epsilon$ 

# Summary

$$R_{2.08} \sim R_{1.40} (!)$$



strong Ist order P.T. unlikely for  $n_B \sim 2-5n_0$ 

Quark-Hadron-Continuity: a good baseline

**Peak** in sound velocity



signature of quark matter formation

(quark saturation effects)

#### Not explained in this talk: (please see appendix)

- effects of interactions
- quantum numbers (flavors, spins, ...)
- the relation to quarkyonic matter models

- QHC18, 19, 21
- 2-color QCD examples

# Back up

## Jump in pressure : schematic picture

$$\mathcal{P}=n_B^2\,rac{\partial}{\partial n_B}igg(rac{arepsilon}{n_B}igg)$$
 energy per particle



 $\varepsilon$ ,  $n_B$  are continuous ( $f_q$  continuous)

# **Stiff quark EoS?**: a guide

cf) [TK-Powell-Song-Baym, '14]

kin. energy

interactions

$$\varepsilon(n) = an^{4/3} + \underline{bn^{\alpha}}$$

ideal gas

interactions

(n: quark density)

 $P = \frac{\varepsilon}{3} + b\left(\underline{\alpha} - \frac{4}{3}\right)n^{\alpha}$ 

For stiff EoS:

(for large P)

for  $\alpha > 4/3$ :

b > 0 (e.g. bulk repulsion,  $\sim + n_B^2/\Lambda^2$ )

for  $\alpha < 4/3$ :

b < 0 (e.g. surface pairings,  $\sim -\Lambda^2 n_B^{2/3}$ )

quark Fermi sea (ideal combo)

repulsion

"Exotic" Fermi surface stiffens EoS!

Reminder: QCD int. are very **channel dependent!** 

#### a baryon in dilute regime

# (color-singlet) (always) colorantisymmetric (attractive electric int.) e.g., nucleons

$$M_N \sim 3M_{q.} + kin. + color-EM$$

- 150-200MeV

~ 940MeV ~ 1100MeV

in dense regime



more chances to feel repulsion

### quark energy; parameterization of MF

$$E_{\text{CQM}}(\boldsymbol{k}) = \sqrt{M_q^2 + \boldsymbol{k}^2} - C_A + C_S[f_{\boldsymbol{q}}(k)]^{\beta}$$

for 
$$f_q(p) \ll I$$

$$\mathcal{V}_{\mathrm{CE}}[f_q] \simeq -C_E^{\mathcal{A}}$$

p

for  $f_q(p) \sim I$ 

$$\mathcal{V}_{\mathrm{CE}}[f_q] \simeq C_E^{\mathcal{S}}$$

for saturated levels

dilute in momentum space



color-antisym. channels dominate

→ the quark feels *attractive* correlations



color-sym. channels also enter

→ the quark feels repulsive correlations

#### **EoS** with interactions







0.10 .....

0.15

0.20

 $C_E^{\mathcal{S}}[\text{GeV}] = 0.05$ 

250

stiffening



adjust  $C_E^A$  (fit  $M_B = 939 \text{ MeV}$ )

high density stiffening

peak in c<sub>s</sub>

# Example) 2-color NJL model

- baryons = diquarks
- diquark mass =  $m_{\pi}$  <<  $M_{q}$
- BEC-BCS crossover (diquark condensate)

$$\mathcal{L}_4 = G\left[ (\bar{q}\tau_a q)^2 + (\bar{q}i\gamma_5\tau_a q)^2 \right]$$
  
+ 
$$H\left[ |\bar{q}i\gamma_5\tau_2\sigma_2 q_C|^2 + |\bar{q}\tau_2\sigma_2 q_C|^2 \right]$$







BEC  $\rightarrow$  BCS &  $c_s^2\uparrow$  occur at 0.5-In<sub>0</sub> (early stiffening)

### QHC EoS (18, 19, 21)

# 3-window modeling



Masuda+('12),TK+('14), Baym+('18, 19),TK('21)



#### quark model template

chiral color-mag. nB-nB int. 
$${\cal H}={\cal H}_{
m NJL}-\underline{H}\sum_A(q\Gamma_Aq)(ar q\Gamma_Aar q)+\underline{g_V}\left(ar q\gamma_0q
ight)^2$$

#### survey for $(g_V, H)_{@3.5-5n0}$ [Baym+'19,TK'21] An exercise:

#### Prepare **realistic** nuclear EoS up to 1.5-2n0 Step 1)

[e.g. Akmal+1998, **Togashi+2017**, **ChEFT**, ...] 30-40% uncertainties @~n0

#### Survey the range of $(g_V, H)$ compatible with causality & stability Step2)





nuclear uncertainties  $\rightarrow \Delta R_{1.4} \sim 0.7$  km, the peak in  $c_s^2$  robust

### Trends found in this exercise (for quark matter part)

for quark EoS consistent with all constraints

- bottom line:  $(g_V, H)_{@3.5-5n0} \sim (G_s)_{@vac}$ interactions remain non-perturbative (!)
- Slow chiral restoration

at 
$$5n_0$$
:  $M_u \sim M_d \sim 50 \text{ MeV} >> \sim 5 \text{ MeV}$ ,  $M_s \sim 300 \text{ MeV} >> \sim 100 \text{ MeV}$ 

Pairing effects important

at 
$$5n_0$$
:  $\Delta_{CFL} \sim 200 \text{ MeV (!)}$ 

• For allowed range of  $(g_v, H)$ ,  $M_{max} \sim 2.4 M_{sun}$ 

### Inversion problem: motivations to study B

• perhaps convenient to use the baryonic bases for low E physics

$$P(\mu_B)|_{\beta-eq}$$
  $\longrightarrow$   $P(\mu_B, \mu_Q, T, ...)$ 

extensions of the quark-hadron continuity

relations to the McLerran-Reddy (MR) model



important parameter

$$\Delta = \frac{\Lambda^3}{k_{\rm FB}^2} + \kappa \frac{\Lambda}{N_c^2}$$

why this form?

- phenomenological [McLerran-Reddy, PRL '19]
- derivation in excluded vol. model
   [Jeong-McLerran-Sen, '19]

#### A trial: shell form

$$\mathcal{B}^{\rm sh}(P_B; P_{\rm sh}) = \underline{h}\theta(P_{\rm sh} - P_B)\theta(P_B - P_{\rm sh} - \underline{\Delta})$$



$$f_q^{\rm sh}(p) \simeq h\Delta \frac{N_{\rm c}^3}{\sqrt{\pi}} \frac{\tilde{P}_{\rm sh}}{\tilde{p}} e^{-\tilde{p}^2 - \tilde{P}_{\rm sh}^2} \left( e^{2\tilde{p}\tilde{P}_{\rm sh}} - e^{-2\tilde{p}\tilde{P}_{\rm sh}} \right)$$



$$f_q^{\rm sh}(p) \sim h\Delta N_{\rm c}^2 e^{-(\tilde{p}-\underline{\tilde{P}_{\rm sh}})^2}$$



# Constraints from $f_a$ (for $P_{sh} \sim N_c \Lambda$ )

$$(for P_{sh} \sim N_c \Lambda)$$

$$f_q^{\rm sh}(p) \sim h\Delta N_{\rm c}^2 e^{-(\tilde{p}-\tilde{P}_{\rm sh})^2}$$



constraint: 
$$f_a^{sh} < I \implies h \triangle < \Lambda/N_c^2$$

a possible scaling form: 
$$[h\Delta](P_{\rm sh}) \sim c_0 \Lambda \left(\frac{\Lambda^2}{P_{\rm sh}^2} + \frac{c_1}{N_{\rm c}} \frac{\Lambda}{P_{\rm sh}} + \frac{c_2}{N_{\rm c}^2}\right)$$



MR-model

(thin shell model)

$$h = I$$
 &  $\Delta = \frac{\Lambda^3}{k_{\rm FB}^2} + \kappa \frac{\Lambda}{N_c^2}$  (c<sub>1</sub> = 0)

#### MR-model: EoS

$$P_{sh} \sim N_c \Lambda$$
 baryon relativistic

but 
$$n_B \simeq \frac{h}{\pi^2} \left( P_{
m sh}^3 - (P_{
m sh} - \Delta)^3 \right) \sim \underline{h \Delta P_{
m sh}^2}$$
  $n_B^{(bulk)} \sim \Lambda^3$  
$$\simeq c_0 \Lambda^3 + c_1 \Lambda^2 \frac{P_{
m sh}}{N_c} + c_2 \Lambda \left( \frac{P_{
m sh}}{N_c} \right)^2$$
  $n_B \sim \Lambda^3$  (!) <<

$$=c_0 n + c_1 n + c_2 n \setminus N_c + c_2 n \setminus N_c$$

$$n_B \sim \Lambda^3 \ (!) << (N_c \Lambda)^3$$

(kin.) energy density:

$$\varepsilon - m_B n_B \sim h \Delta \times [E(P_{sh}) - m_B] \times 4\pi P_{sh}^2$$

consistent with quark's

$$\sim \Lambda/N_c^2 \times (N_c \Lambda)^2/m_B \times (N_c \Lambda)^2 \sim N_c \Lambda^4$$

relativistic pressure ~  $N_c \Lambda^4$  within  $n_B \sim \Lambda^3 \rightarrow stiff EoS$ 

#### Quantum numbers?

quark quantum numbers;  $N_c$ ,  $N_f$ , 2-spins (for a given spatial w.f.)

how many baryon species are needed to saturate quark states?

 $\rightarrow$  we need only  $2N_f = 6$  species for  $N_f = 3$ 

(full members of singlet, octet, decuplet are NOT necessary)

#### convenient color-flavor-spin bases

[ neglect N-⊿ splitting etc. for simplicity ]

$$\Delta_{s_z=\pm 3/2}^{++} = [u_R \uparrow u_G \uparrow u_B \uparrow], \quad [u_R \downarrow u_G \downarrow u_B \downarrow],$$

$$\Delta_{s_z=\pm 3/2}^{-} = [d_R \uparrow d_G \uparrow d_B \uparrow], \quad [d_R \downarrow d_G \downarrow d_B \downarrow],$$

$$\Omega_{s_z=\pm 3/2}^{-} = [s_R \uparrow s_G \uparrow s_B \uparrow], \quad [s_R \downarrow s_G \downarrow s_B \downarrow],$$



#### Total 20 min + 5 min

#### **Introduction** (7 slides): 9 min

| ١, | title           | [0.5 min]             |
|----|-----------------|-----------------------|
| 2, | general context | [1.0 min]             |
| 3, | a picture       | [1.5 min]             |
| 4, | M-R vs EOS      | [1.0 min]             |
| 5  | NICER           | [1.5 min]             |
| 7  | soft-stiff      | [1.5 min]             |
| 8, | T vs mu         | [1.5 min <sup>-</sup> |

#### main (8 slides): 10.5 min

| l, strategy        | [1.5 min] |
|--------------------|-----------|
| 2, quarks in B     | [2.0 min] |
| 3, quarks in B-mat | [1.5 min] |
| 4, evo             | [2.0 min] |
| 5, saturation3     | [1.5 min] |
| 6, saturation4     | [1.5 min  |