Constraining quark matter inside hybrid stars

János Takátsy ELTE Institute of Physics Wigner RCP Péter Kovács Senior Research Fellow Wigner RCP *PhD Advisor*

Zimányi Winter School 2021, 6-10 December 2021

Collaborators: György Wolf, Jürgen Schaffner-Bielich

takatsv.janos@wigner.hu

Supported by the ÚNKP-21-3 New National Excellence Program of the Ministry for Innovation and Technology.

János Takátsv

Motivation	The eLSM	
0		
		/

Motivation: QCD and neutron stars

- We can not solve QCD at large densities from first principles due to the sign problem
- There are no experimental results in this region so far
- We may use effective models to try to describe strongly interacting matter
- Neutron stars may provide constraints for these models

Linear sigma model

Simple effective model that realizes global chiral symmetry: SU(1) linear sigma model:

$$\mathcal{L} = \bar{\Psi} \left[i D - g(\sigma + i \pi \gamma_5) \right] \Psi + \frac{1}{2} \left[(\partial_\mu \sigma)^2 + (\partial_\mu \pi)^2 \right] - V(\sigma, \pi)$$

Mesonic potential: $V(\sigma, \pi) = \frac{\lambda}{4}(\sigma^2 + \pi^2 - f^2)^2, \lambda > 0$

Spontaneous symmetry breaking: $(\sigma, \pi) \rightarrow (f + \sigma, \pi)$ \hookrightarrow generates mass for the fermion: $m_q = gf$ (Goldberger– Treiman relation)

 \hookrightarrow Nambu–Goldstone boson: $m_{\pi} = 0, \ m_{\sigma} = \sqrt{2\lambda f^2}$

Including thermal contribution from quarks \rightarrow symmetry is restored at high temperature and density $\hookrightarrow SU(3)$ theories describe vacuum phenomenology and chiral phase transition successfully

The eLSM	
0000	

eLSM Particle content

• Vector and Axial-vector meson nonets

$$V^{\mu} = \frac{1}{\sqrt{2}} \begin{pmatrix} \frac{\omega_{N} + \rho^{0}}{\sqrt{2}} & \rho^{+} & K^{\star +} \\ \rho^{-} & \frac{\omega_{N} - \rho^{0}}{\sqrt{2}} & K^{\star 0} \\ K^{\star -} & K^{\star 0} & \omega_{S} \end{pmatrix}^{\mu} \quad A^{\mu} = \frac{1}{\sqrt{2}} \begin{pmatrix} \frac{f_{1N} + a_{1}^{0}}{\sqrt{2}} & a_{1}^{+} & K_{1}^{+} \\ a_{1}^{-} & \frac{f_{1N} - a_{1}^{0}}{\sqrt{2}} & K_{1}^{0} \\ K_{1}^{-} & K_{1}^{0} & f_{1S} \end{pmatrix}^{\mu} \\ \rho \to \rho(770), K^{\star} \to K^{\star}(894) & a_{1} \to a_{1}(1230), K_{1} \to K_{1}(1270) \\ \omega_{N} \to \omega(782), \omega_{S} \to \phi(1020) & f_{1N} \to f_{1}(1280), f_{1S} \to f_{1}(1426) \end{cases}$$

• Scalar (~ $\bar{q}_i q_i$) and pseudoscalar (~ $\bar{q}_i \gamma_5 q_j$) meson nonets

$$\Phi_{S} = \frac{1}{\sqrt{2}} \begin{pmatrix} \frac{\sigma_{N} + a_{0}^{0}}{\sqrt{2}} & a_{0}^{+} & K_{0}^{*+} \\ a_{0}^{-} & \frac{\sigma_{N} - a_{0}^{0}}{\sqrt{2}} & K_{0}^{*0} \\ K_{0}^{*-} & K_{0}^{*0} & \sigma_{S} \end{pmatrix} \quad \Phi_{PS} = \frac{1}{\sqrt{2}} \begin{pmatrix} \frac{\eta_{N} + \pi^{0}}{\sqrt{2}} & \pi^{+} & K^{+} \\ \pi^{-} & \frac{\eta_{N} - \pi^{0}}{\sqrt{2}} & K^{0} \\ K^{-} & K^{0} & \eta_{S} \end{pmatrix}$$
multiple possible assignments $\pi \to \pi(138) \ K \to K(495)$

multiple possible assignments $\pi \to \pi(138), K \to K(495)$ mixing in the $\sigma_N - \sigma_S$ sectormixing: $\eta_N, \eta_S \to \eta(548), \eta'(958)$

Spontaneous symmetry breaking: $\sigma_{N/S}$ acquire nonzero expectation values $\phi_{N/S}$ fields shifted by their expectation value: $\sigma_{N/S} \rightarrow \sigma_{N/S} + \phi_{N/S}$

The eLSM	
0000	

Results at zero chemical potential

- pions dominate the pressure at small T- contribution of the kaons is important - at high T the pressure overshoots the lattice data of Borsányi *et al.*, JHEP 1011, 077 (2010) - subtracted chiral condensate:

$$\Delta_{l,s} = \frac{\left(\Phi_N - \frac{h_N}{h_S} \cdot \Phi_S\right)\Big|_T}{\left(\Phi_N - \frac{h_N}{h_S} \cdot \Phi_S\right)\Big|_{T=0}}$$

good agreement with the lattice result of Borsányi *et al.*, JHEP 1009, 073 (2010)

The eLSM	
0000	

Ingredients for hybrid stars 1

For hybrid stars we need the EoS at high density and T = 0:

- ▶ we need to introduce non-zero vector condensates
- free electron gas + β -equilibrium
- \blacktriangleright charge neutrality: $\frac{2}{3}n_u-\frac{1}{3}n_d-\frac{1}{3}n_s-n_e=0$
- ▶ 5 field equations (no Polyakov-loop contribution)

 \hookrightarrow a naive parametrization \rightarrow chiral symmetry would be broken at high densities \hookrightarrow investigating the asymptotic behavior we get an additional constraint for the parameters \hookrightarrow we get $m_{\sigma} = 290$ MeV from parametrization

Hybrid stars also have a hadronic crust and outer core:

- ▶ at low densities we use hadronic EoS's (SFHo and DD2)
- we apply a smooth crossover between the two phases: $\varepsilon(n)$ interpolation

$$\begin{split} \varepsilon(n) &= \varepsilon_{H}(n)f_{-}(n) + \varepsilon_{Q}(n)f_{+}(n), \\ f_{\pm}(n) &= \frac{1}{2}\left(1 \pm \tanh\left(\frac{n-\bar{n}}{\Gamma}\right)\right) \end{split}$$

 \hookrightarrow we also try other interpolation methods \hookrightarrow 4 tunable parameters altogether: m_{σ} , g_V , \bar{n} , Γ \hookrightarrow we use the $\varepsilon(n)$ interpolation with $\bar{n} = 3.5n_0$ and $\Gamma = 1.5n_0$ as our standard choice

The eLSM	Results	
	●000	

M - R curves for different g_V 's

 \hookrightarrow larger vector couplings result in larger hybrid star masses \hookrightarrow maximum masses are increased due to the intermediate density stiffening of the hybrid EoS's \hookrightarrow large sigma masses (brighter tones) are excluded by upper radius constraints

The eLSM 0000	Results 0000	

Effect of sigma mass and phase transition

 \hookrightarrow maximum mass hybrid stars seem to reside in a small region, independent of the phase transition parameters¹ \hookrightarrow with $m_{\sigma} = 290$ MeV g_V is constrained to $2.6 < g_V < 4.3$

¹similar results were found in Cierniak & Blaschke, EPJ ST 229, 3663 (2020)

The eLSM 0000	Results oo●o	

Results from Bayesian analysis

János Takátsy takatsy.ja

The eLSM 0000	Results 000●	

Results from Bayesian analysis

János Takátsy takatsy.janos@wigner.hu

	The eLSM 0000	Summary ●0
Summary		

Conclusions

- we developed a model that describes vacuum phenomenology and finite temperature behaviour accurately
- we found that the maximum neutron star mass can be used to constrain the parameters of the model
- ▶ a very low sigma meson mass is preferred ($m_{\sigma} = 290$ MeV), while $2.6 < g_V < 4.3$
- ▶ from our Bayesian analysis we found that a narrow phase transition is optimal with its center at $3 4n_0$
- ▶ check out our paper: arXiv:2111.06127

Discussion

- ▶ without upper mass constraint we get $g_v \approx 5$
- ▶ using a self-consistent parametrization², we also get $g_v \approx 5$

 $^{^2{\}rm Gy.}$ Kovács et al., Phys. Rev. D 104, 056013 (2021)

The eLSM	Summary
	00

Thank you for your attention!

QCD and chiral symmetry

The QCD Lagrangian:

$$\mathcal{L} = \sum_{f} \overline{q}_{f} (i \gamma^{\mu} D_{\mu} - m_{f}) q_{f} - \frac{1}{4} G^{a}_{\mu\nu} G^{\mu\nu}_{a}$$

 \hookrightarrow has local $SU(3)^{\text{color}}$ gauge symmetry

Introducing $q_L = \frac{1-\gamma_5}{2} q$ and $q_R = \frac{1+\gamma_5}{2} q$ left- and right-handed fields the fermionic terms become:

 \hookrightarrow in the limit $m \to 0$ we have an additional $U(3)_L \times U(3)_R \simeq U(3)_V \times U(3)_A$ global symmetry

QCD and chiral symmetry

 $\begin{array}{l} \hookrightarrow \mbox{ in the limit } m \to 0 \mbox{ we have an additional } U(3)_L \times U(3)_R \\ \simeq U(3)_V \times U(3)_A \mbox{ global symmetry} \end{array}$

Symmetry breaking:

- \blacktriangleright Nontrivial QCD vacuum: Nambu–Goldstone bosons \rightarrow pseudoscalar mesons
- ▶ Explicit symmetry breaking by the quark masses: $SU(3)_A$ is broken, pseudoscalar mesons have nonzero masses
- ▶ With $m_u = m_d \neq m_s$: $U(3)_V \rightarrow U(1)_V \times SU(2)_V$
- ▶ $U(1)_A$ symmetry is broken due to the 't Hooft instanton mechanism: large mass of the η' meson
- ▶ $U(1)_V$ symmetry corresponds to baryon number conservation

eLSM Lagrangian I.

The matter and external fields are

$$\Phi = \sum_{i=0}^{8} (\Phi_{S,i} + i\Phi_{PS,i}) T_i, \quad H = \sum_{i=0}^{8} h_i T_i \qquad T_i : U(3) \text{ generators}$$
$$R^{\mu} = \sum_{i=0}^{8} (V_i^{\mu} - A_i^{\mu}) T_i, \quad L^{\mu} = \sum_{i=0}^{8} (V_i^{\mu} + A_i^{\mu}) T_i, \quad \Delta = \sum_{i=0}^{8} \delta_i T_i$$
$$\Psi = (u, d, s)^{\mathrm{T}}$$

Non strange – strange basis:

Broken symmetry: non-zero condensates $\langle \sigma_{N/S} \rangle \equiv \bar{\sigma}_{N/S}$

eLSM Lagrangian

 $\mathcal L$ constructed based on linearly realized global $U(3)_L\times U(3)_R$ symmetry and its explicit breaking

$$\begin{split} \mathcal{L} &= \mathrm{Tr}[(D_{\mu}\Phi)^{\dagger}(D_{\mu}\Phi)] - m_{0}^{2}\mathrm{Tr}(\Phi^{\dagger}\Phi) - \lambda_{1}[\mathrm{Tr}(\Phi^{\dagger}\Phi)]^{2} - \lambda_{2}\mathrm{Tr}(\Phi^{\dagger}\Phi)^{2} \\ &+ c_{1}(\det\Phi + \det\Phi^{\dagger}) + \mathrm{Tr}[H(\Phi + \Phi^{\dagger})] - \frac{1}{4}\mathrm{Tr}(L_{\mu\nu}^{2} + R_{\mu\nu}^{2}) \\ &+ \mathrm{Tr}\left[\left(\frac{m_{1}^{2}}{2}\mathbb{I} + \Delta\right)(L_{\mu}^{2} + R_{\mu}^{2})\right] + i\frac{g_{2}}{2}(\mathrm{Tr}\{L_{\mu\nu}[L^{\mu}, L^{\nu}]\} + \mathrm{Tr}\{R_{\mu\nu}[R^{\mu}, R^{\nu}]\}) \\ &+ \frac{h_{1}}{2}\mathrm{Tr}(\Phi^{\dagger}\Phi)\mathrm{Tr}(L_{\mu}^{2} + R_{\mu}^{2}) + h_{2}\mathrm{Tr}[(L_{\mu}\Phi)^{2} + (\Phi R_{\mu})^{2}] + 2h_{3}\mathrm{Tr}(L_{\mu}\Phi R^{\mu}\Phi^{\dagger}) \\ &+ \bar{\Psi}i\gamma_{\mu}D^{\mu}\Psi - g_{F}\bar{\Psi}(\Phi_{S} + i\gamma_{5}\Phi_{PS})\Psi - g_{V}\bar{\Psi}(\gamma^{\mu}(V_{\mu} + \gamma_{5}A_{\mu})\Psi \end{split}$$

$$\begin{aligned} D^{\mu}\Phi &= \partial^{\mu}\Phi - ig_{1}(L^{\mu}\Phi - \Phi R^{\mu}) - ieA_{e}^{\mu}[T_{3}, \Phi], \\ L^{\mu\nu} &= \partial^{\mu}L^{\nu} - ieA_{e}^{\mu}[T_{3}, L^{\nu}] - \{\partial^{\nu}L^{\mu} - ieA_{e}^{\nu}[T_{3}, L^{\mu}]\}, \\ R^{\mu\nu} &= \partial^{\mu}R^{\nu} - ieA_{e}^{\mu}[T_{3}, R^{\nu}] - \{\partial^{\nu}R^{\mu} - ieA_{e}^{\nu}[T_{3}, R^{\mu}]\}, \\ D^{\mu}\Psi &= \partial^{\mu}\Psi - iG^{\mu}\Psi, \quad \text{with} \quad G^{\mu} = g_{s}G_{a}^{\mu}T_{a}. \end{aligned}$$

+ Polyakov loop potential

Features of our approach

- $\blacktriangleright\,$ D.O.F's: scalar, pseudoscalar, vector, and axial-vector nonets
 - -u, d, s constituent quarks $(m_u = m_d)$
 - Polyakov loop variables $\Phi, \bar{\Phi}$ with \mathcal{U}_{log}^{YM} or \mathcal{U}_{log}^{glue}
- ▶ no mesonic fluctuations, only fermionic ones, grand potential approximated as: $\Omega(\tau, \mu_q) = U_{\text{meson}}^{\text{tree}}(\langle M \rangle) + \Omega_{\bar{q}q}^{(0)}(\tau, \mu_q) + U_{\log}(\Phi, \bar{\Phi}), \ \bar{\mu}_q = \mu_q iG_4$
- ▶ fermionic vacuum and thermal fluctuations included in the (pseudo)scalar curvature masses used to parameterize the model

$$\Delta \hat{m}_{ab}^{2,(X)} \equiv \frac{d^2 \Omega_{\bar{q}q}^{(0)}(T,\mu_q)}{dX_a dX_b} \bigg|_{\min}, \quad X \in \{S,P\}$$

- ► tree-level (axial)vector masses
- ▶ 4 coupled T/μ_B -dependent field equations for the condensates $\phi_N, \phi_S, \Phi, \bar{\Phi}$
- ▶ thermal contribution of π , K, f_0^L included in the pressure, however their curvature mass contains no mesonic fluctuations

Determination of the parameters

- ▶ PCAC → 2 physical quantities: f_{π}, f_K
- ▶ Curvature masses \rightarrow 16 physical quantities:

 $m_{u/d}, m_s, m_{\pi}, m_{\eta}, m_{\eta'}, m_K, m_{\rho}, m_{\Phi}, m_{K^{\star}}, m_{a_1}, m_{f_1^H}, m_{K_1},$

 $m_{a_0}, m_{K_s}, m_{f_0^L}, m_{f_0^H}$

▶ Decay widths \rightarrow 12 physical quantities:

 $\Gamma_{\rho \to \pi\pi}, \Gamma_{\Phi \to KK}, \Gamma_{K^{\star} \to K\pi}, \Gamma_{a_1 \to \pi\gamma}, \Gamma_{a_1 \to \rho\pi}, \Gamma_{f_1 \to KK^{\star}}, \Gamma_{a_0}, \Gamma_{K_S \to K\pi}, \\ \Gamma_{f_0^L \to \pi\pi}, \Gamma_{f_0^L \to KK}, \Gamma_{f_0^H \to \pi\pi}, \Gamma_{f_0^H \to KK}$

• Pseudocritical temperature T_c at $\mu_B = 0$

14 unknown parameters $(m_0, \lambda_1, \lambda_2, c_1, m_1, g_1, g_2, h_1, h_2, h_3, \delta_5, \Phi_N, \Phi_S, g_F) \longrightarrow$ determined by the min. of χ^2 :

$$\chi^2(x_1,\ldots,x_N) = \sum_{i=1}^M \left[\frac{Q_i(x_1,\ldots,x_N) - Q_i^{\exp}}{\delta Q_i}\right]^2,$$

 $(x_1, \ldots, x_N) = (m_0, \lambda_1, \lambda_2, \ldots), Q_i(x_1, \ldots, x_N) \longrightarrow$ from the model, $Q_i^{exp} \longrightarrow PDG$ value, $\delta Q_i = \max\{5\%, PDG \text{ value}\}$ multiparametric minimalization $\longrightarrow MINUIT$

Results at zero chemical potential

Speed of sound and p/ϵ

Scaled interaction measure

For large temperature the speed of sound approaches the conformal limit $c_s^2 \to 1/3$

Figures are from P. Kovács et al., Phys. Rev. D 93, 114014 (2016)

Backup slides

Equation of state

 \hookrightarrow the concatenation results in a stiff intermediate density region for larger vector couplings \hookrightarrow the maximum density inside hybrid stars resides in the crossover region

Self-consistent Gaussian approximation

$$\begin{split} \Delta \hat{m}_{ab}^{2,(X)} &\equiv \left. \frac{d^2 U_f(\phi,\xi)}{dX_a dX_b} \right|_{\xi=0}, \quad X \in \{S,P\} \\ \Delta \hat{M}_{\mu\nu,ab}^{2,(Y)} &\equiv -\frac{d^2 U_f(\phi,\xi)}{dY_a^{\mu} dY_b^{\nu}} \right|_{\xi=0}, \quad Y \in \{V,A\}, \quad \xi \in \{X_a,Y_a\}, \quad \phi \in \{\phi_N,\phi_S,\Phi,\bar{\Phi}\ldots\} \end{split}$$

where U_f is the fermionic contribution to the effective potential,

$$U_f(\phi, \xi) = i \operatorname{Tr}_D \int_{\mathcal{K}} \log(i \mathcal{S}^{-1}(\mathcal{K}; \xi) \big|_{\xi=0} - \frac{i}{2} \operatorname{Tr} \int_{\mathcal{K}} \log\left(i \mathcal{D}_{(\mu\nu), ab}^{-1}(\mathcal{K}) - \Pi_{(\mu\nu), ab}(\mathcal{K})\right)$$

On the other hand: The curvature masses are the one-loop self-energies at vanishing momentum:

$$\Pi_{ab}^{(V/A)\mu\nu}(Q) = i2N_c g_V^2 \int_K \frac{g^{\mu\nu}(\pm m_a m_b - K^2 + K \cdot Q) + 2K^{\mu}K^{\nu} - K^{\mu}Q^{\nu} - Q^{\mu}K^{\nu}}{(K^2 - m_a^2)((K - Q)^2 - m_b^2)}$$

- At $\mathcal{T}=0 \rightarrow$ vacuum self-energy \rightarrow renormalization \rightarrow dimensional regularization
- At $T \neq 0 \longrightarrow$ matter part (with statistical function) \rightarrow Wick rotation, Matsubara sum, $\int_{K} \rightarrow iT \sum_{n} \int \frac{d^{3}k}{(2\pi)^{3}}$

\mathcal{T} dependence of (axial)vector masses

From the χ^2 fit the vector coupling: $g_{\nu} \approx 5$ (Gy. Kovács, P. Kovács, Zs. Szép, arXiv:2105.12689)

Polyakov loops in Polyakov gauge

Polyakov loop variables: $\Phi(\vec{x}) = \frac{\operatorname{Tr}_c L(\vec{x})}{N_c}$ and $\bar{\Phi}(\vec{x}) = \frac{\operatorname{Tr}_c \bar{L}(\vec{x})}{N_c}$ with $L(x) = \mathcal{P} \exp\left[i \int_0^\beta d\tau G_4(\vec{x}, \tau)\right]$

- \hookrightarrow signals center symmetry (\mathbb{Z}_3) breaking at the deconfinement transition
- low T: confined phase, $\langle \Phi(\vec{x}) \rangle$, $\langle \bar{\Phi}(\vec{x}) \rangle = 0$ high T: deconfined phase, $\langle \Phi(\vec{x}) \rangle$, $\langle \bar{\Phi}(\vec{x}) \rangle \neq 0$
 - ▶ Polyakov gauge: $G_4(\vec{x}, \tau) = G_4(\vec{x})$, plus gauge rotation to diagonal form in color space
 - ▶ further simplification: \vec{x} -independence

$$\hookrightarrow \quad L = e^{i\beta G_4} = \operatorname{diag}(a, b, c) \left(\stackrel{!}{\in} SU(3)^{\operatorname{color}} \right); \quad a, b, c \in \mathbb{Z}$$

 \hookrightarrow use this to calculate partition function of free quarks

Form of the potential

I.) Simple polynomial potential invariant under \mathbb{Z}_3 and charge conjugation: R.D.Pisarski, PRD 62, 111501

with
$$\begin{aligned} \frac{\mathcal{U}_{\text{poly}}^{\text{YM}}(\Phi,\Phi)}{T^4} &= -\frac{b_2(T)}{2}\bar{\Phi}\Phi - \frac{b_3}{6}\left(\Phi^3 + \bar{\Phi}^3\right) + \frac{b_4}{4}\left(\bar{\Phi}\Phi\right)^2 \\ b_2\left(T\right) &= a_0 + a_1\frac{T_0}{T} + a_2\frac{T_0^2}{T^2} + a_3\frac{T_0^3}{T^3} \end{aligned}$$

II.) Logarithmic potential coming from the *SU*(3) Haar measure of group integration K. Fukushima, Phys. Lett. **B591**, 277 (2004)

$$\begin{aligned} \frac{\mathcal{U}_{\log}^{\text{YM}}(\Phi,\bar{\Phi})}{T^4} &= -\frac{1}{2}a(T)\Phi\bar{\Phi} + b(T)\ln\left[1 - 6\Phi\bar{\Phi} + 4\left(\Phi^3 + \bar{\Phi}^3\right) - 3\left(\Phi\bar{\Phi}\right)^2\right]\\ \text{with} \qquad a(T) &= a_0 + a_1\frac{T_0}{T} + a_2\frac{T_0^2}{T^2}, \qquad b(T) = b_3\frac{T_0^3}{T^3} \end{aligned}$$

 $\mathcal{U}^{\mathrm{YM}}\left(\Phi,\bar{\Phi}\right)$ models the free energy of a pure gauge theory

Result of the parametrization

- 40 possible assignments of scalar mesons to the scalar nonet states
- 3 values of M_0 are used \implies 120 cases to investigate for each case $5 \cdot 10^4 - 10^5$ configurations are used for the χ^2 minimization
- lowest χ^2 obtained for $M_0 = 0.3 \text{ GeV}$ $\chi^2 = 18.57 \text{ and } \chi^2_{\text{red}} \equiv \frac{\chi^2}{N_{\text{dof}}} = 1.16$ assignment: $a_0^{\bar{q}q} \to a_0(980), \ K_0^{\star,\bar{q}q} \to K_0^{\star}(800), \ f_0^{L,\bar{q}q} \to f_0(500), \ f_0^{H,\bar{q}q} \to f_0(980)$

problems: $m_{a_0} < m_{K_0^{\star}}, m_{f_0^{H/L}}$ too light

• by minimizing also for M_0 we obtain using $\mathcal{U}_{log}^{YM}(\Phi, \bar{\Phi})$ with $T_0 = 182$ MeV:

Parameter	Value	Parameter	Value
$\phi_N \; [\text{GeV}]$	0.1411	g 1	5.6156
$\phi_{\mathcal{S}} [\text{GeV}]$	0.1416	g 2	3.0467
$m_0^2 [{ m GeV}^2]$	2.3925 <i>E</i> -4	h ₁	27.4617
$m_1^2 [{ m GeV^2}]$	6.3298 _{E-8}	h ₂	4.2281
λ_1	-1.6738	h ₃	5.9839
λ_2	23.5078	<i>Ø</i> F	4.5708
$c_1 \; [\text{GeV}]$	1.3086	$M_0 \; [\text{GeV}]$	0.3511
$\delta_{S} [\text{GeV}^2]$	0.1133		