Radial and non-radial oscillation modes of non-rotating compact stars

Dániel Barta

barta.daniel@wigner.hu

Wigner Research Centre for Physics, Budapest

Zimányi School 2021 Budapest, December 8th, 2021

In collaboration with:

Balázs Kacskovics (Wigner RCP), Mátyás Vasúth (Wigner RCP)

Related papers: 1908.02808 & 1904.00907 Supported by NKFIH under OTKA grant agreement No. K138277

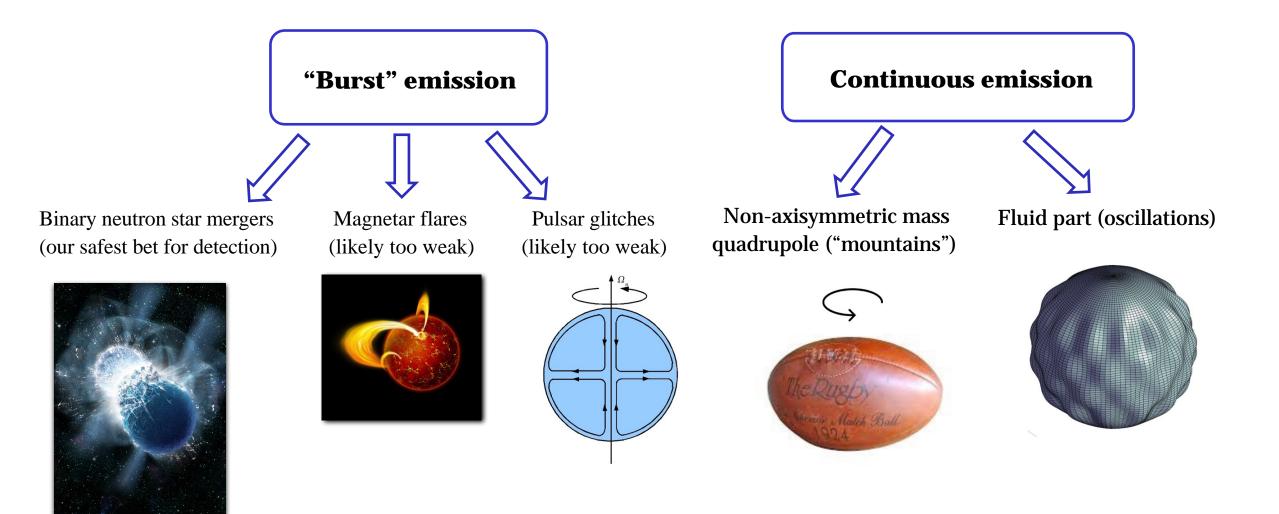
CONTENTS

Sources of NS oscillation Collaborations and current research activity Equilibrium stellar models Polar normal-mode oscillations Simplest case: Linear adiabatic radial oscillation Taxonomy of oscillations modes **Dynamical stability** and eigenfrequencies Non-radial perturbations & their parity

SOURCES OF OSCILLATIONS

- Supernova explosion: triggers all kinds of oscillation modes
- Starquakes caused by craks in the crust or magnetic reconfiguration
- Accretion triggers oscillations
- Tidal forces in binary mergers
- Oscillation modes are *unstable* to gravitational wave emission $\rightarrow r$ -mode or f-mode oscillations

NEUTRON STARS AS GW SOURCES



EQUILIBRIUM STELLAR MODEL

Einstein equations: $G_{\mu\nu} = 8\pi T_{\mu\nu}$

Energy–momentum conservation: $\nabla_{\mu}T^{\mu\nu}=0$

Gravitational mass:

$$\frac{dm}{dr} = 4\pi r^2 \rho$$

Gravitational potential:

$$\frac{dv}{dr} = \frac{2m + 8\pi r^3 p}{r(r - 2m)}$$

STRUCTURE

Hydrostatic equilibrium: $\frac{dp}{dr} = -\frac{(\rho+p)(m+4\pi r^3 p)}{r^2(1-2M/r)}$

$$\frac{dp}{dr} = -\frac{(\rho+p)(m+4\pi r^3)}{r^2(1-2M/r)}$$

(Tolman–Oppenheimer–Volkoff equation)

At the stellar center (r = 0):

- M(0) = 0: the mass function vanish
- $\rho_0 \equiv \rho(0)$: central density is freely specified

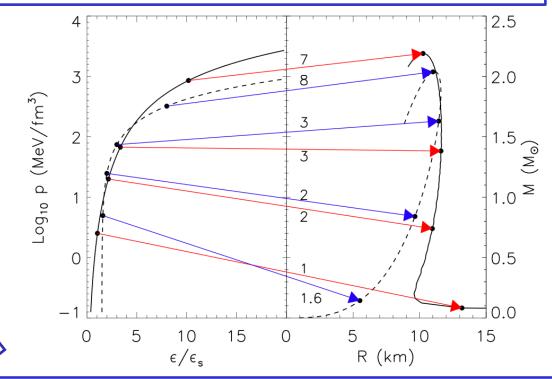
BOUNDARY CONDITIONS At the stellar surface (r = R):

- $M \equiv m(R)$: total mass of the star
- p(R) = 0: the isotropic pressure vanishes
- $e^{\nu(R)} = 1 2M/R$: normalizing the time coordinate at spatial infinity

Energy–momentum tensor (perfect fluid):

$$T_{\mu\nu} = (\rho + p)u_{\mu}u_{\nu} + pg_{\mu\nu}$$

The energy density and the pressure of the fluid are related by an *equation of state*: $p = p(\rho)$ (zero temperature)



Metric tensor: $(ds^2)_0 = e^{\nu}dt^2 + e^{\lambda}dr^2 + r^2(d\theta^2 + \sin^2\theta d\varphi^2)$

where $m(r) \equiv r(1 - e^{-\lambda})/2$ is the "gravitational mass" inside radius r

Comoving coordinates: $u^{\mu} = e^{\nu/2}[-1,0,0,0]$

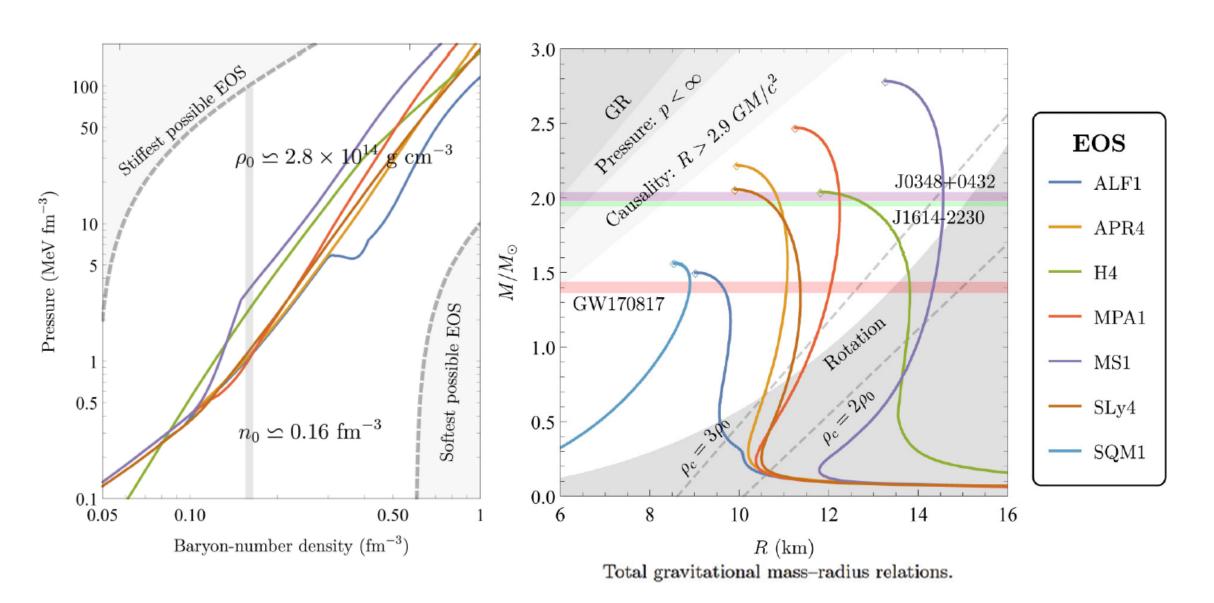
Normalization condition: $g_{\mu\nu}u^{\mu}u^{\nu}=1$

FLUID 4-VELOCITY

THERMODYNAMIC

PROPERTIES

REALISTIC TABULATED EOS MODELS AND ASSOCIATED NEUTRON STARS



SIMPLEST CASE: LINEAR ADIABATIC RADIAL OSCILLATIONS

Perturbations in the fluid 4-velocity can be expressed by

$$\delta u_{\mathrm{radial}}^{\mu} = [e^{\nu_0/2}, -e^{\lambda_0 - \nu_0/2} \delta u_r, 0, 0]$$
 where $\delta u_r = dr/dt$

is associated with a displacement field in the Lagrangian representation: $\partial \xi/\partial t = \delta u_r$.

- 1. The perturbation equations are obtained from $\delta(\nabla_{\mu}T^{\mu\nu}) = 0$, $\delta(G_{\mu\nu} 8\pi T_{\mu\nu}) = 0$. Then, it is straightforward to compute the linear perturbations of any equilibrium quantity $(\delta\rho, \delta p, ...)$.
- 2. With the assumption of harmonic time dependence, Chandrasekhar (1964) showed that:

FUNDAMENTAL EQUATION FOR RADIAL PULSATION

$$\widehat{\omega^{2}}e^{\lambda_{0}-\nu_{0}}(p_{0}+\varepsilon_{0})\xi = \left[\frac{4}{r}\frac{dp_{0}}{dr} + 8\pi e^{\lambda_{0}}p_{0}(p_{0}+\varepsilon_{0}) - \frac{1}{p_{0}+\varepsilon_{0}}\left(\frac{dp_{0}}{dr}\right)^{2}\right]\xi - e^{-(\lambda_{0}+2\nu_{0})/2}\frac{d}{dr}\left[e^{(\lambda_{0}+3\nu_{0})/2}\frac{\Gamma p_{0}}{r^{2}}\frac{d}{dr}\underbrace{\left(r^{2}e^{-\nu_{0}/2}\xi\right)}_{\widehat{X}}\right]$$

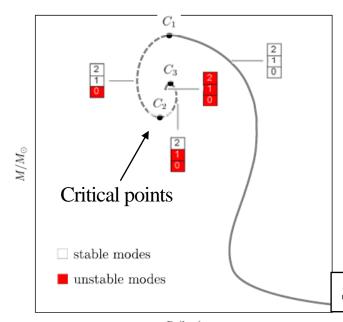
a) The fluid at the center of the star is assumed to remain at rest: X = 0 at r = 0

BOUNDARY CONDITIONS

b) The Lagrangian change in the pressure vanishes at the surface: $\delta p = e^{\nu_0/2} r^{-2} \Gamma p_0 \frac{d}{dr} (r^2 e^{-\nu_0/2} X) \equiv 0$ at r = R

The fundamental equation together with its boundary conditions constitutes a Sturm-Liouville eigenvalue problem (SL-EVP) for a discrete set of scalar-valued eigenfunctions of radial displacement $\{X_0(r), X_1(r), ..., X_j(r), ...\}$ with their respective eigenvalues $\{\omega_0^2, \omega_1^2, ..., \omega_j^2, ...\}$.

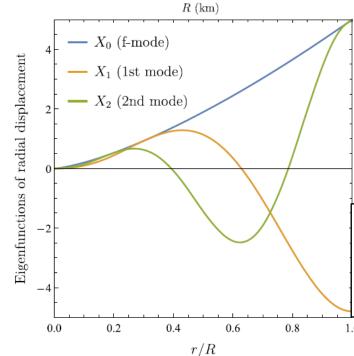
3. To find the eigenfrequencies, we convert the boundary value problem to an initial value problem by "shooting" method!



DYNAMICAL STABILITY

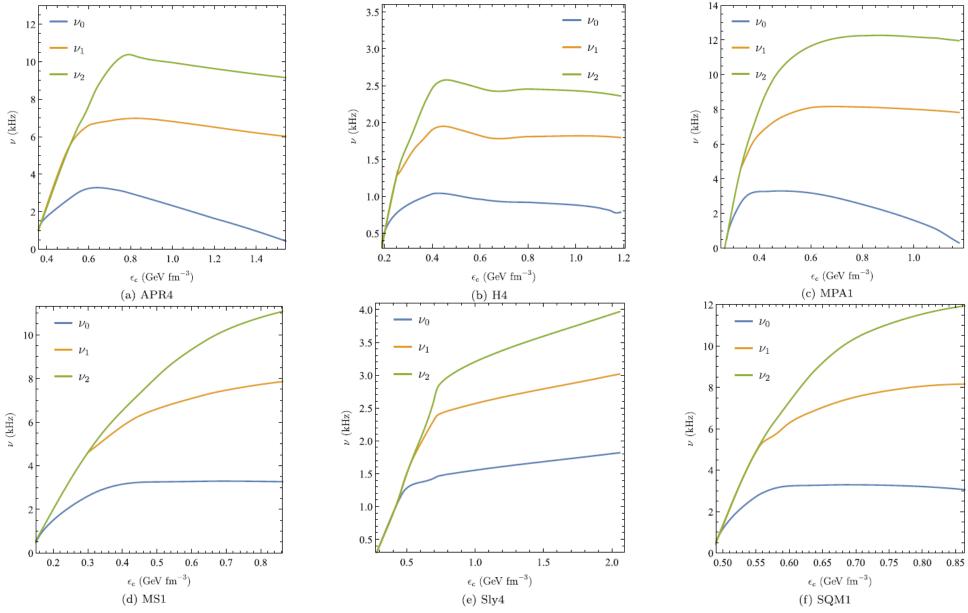
- If any of these ω_j^2 is negative for a particular star, the frequency is purely imaginary and therefore any perturbation of the star $(\sim e^{i\omega t})$ will grow exponentially in time. \Rightarrow dynamically unstabile
- If $\omega_j^2 > 0$, the star is stable against adiabatic radial perturbations (up to the jth excited oscillation mode)

Schematic illustration of the unstable branch of the mass–radius relation. [Barta 2021, CQG 38, 185002]



• The smallest eigenvalue ω_0^2 is associated with the *fundamental-mode frequency* of radial oscillations which *has no nodes* between the center and the stellar surface, whereas the first excited mode (j = 1) has a node, the second one (j = 2) has two, and so forth.

Eigenfunctions functions of radial displacement for the first three lowest-frequency oscillation modes $\{X_0(r), X_1(r), X_2(r)\}$ as a function of the fractional radius r/R obtained for SLy4 EoS at a central density $\rho_c = 0.547$ GeV fm⁻³. The displacement amplitude has been renormalized such that $X_0 = 1$. [Barta 2021, CQG 38, 185002]



The frequencies of the fundamental mode (ν_0) and the first two lowest-frequency excited modes (ν_1 and ν_2) of radial oscillation as functions of central density (ε_c) for each EoS of nucleonic state (APR4, MPA1, MS1, SLy4) and hybrid nucleon–hyperon–quark state (H4, SQM1).

INTERPRETATION OF RESULTS (RADIAL OSCILLATION)

- 1. The decay of the lowest-frequency eigenmodes is a general feature (irrespective of the particular EoS): The f-mode frequency drops toward zero as the particular stellar model approaches its dynamical stability limit which, indeed, is indicated by the presence of an eigenmode with zero-frequency.
 - The dynamical instability in stars with MPA1 and APR4 is exposed by the presence of a very low frequency of the *f*-mode, which has dropped to less than 5% of that of the first excited mode, at central energy densities associated with the maximal-mass stable configurations.
- 2. The oscillation frequency of higher modes is always larger than that of a lower stable mode and for all modes it appears to decrease as the central energy density approaches the smallest possible value ε_{\min} of the particular stellar model
 - When the central energy density of NSs is approaching ε_{\min} , such compact objects become approximately homogeneous and due to their small mass.
- 3. Stellar models of softer EoSs have higher frequencies in the f-mode than the stiffer ones for the same central density.
 - > Stellar models of softer EoSs are generally associated with more centrally condensed stars with larger average densities.

NON-RADIAL FLUID DISPLACEMENT AND PERTURBATION

• The perturbation equations are obtained in the following way:

$$\delta(\nabla_{\mu}T^{\mu\nu}) = 0, \qquad \delta(G_{\mu\nu} - 8\pi T_{\mu\nu}) = 0$$

• **Perturbations** in the **4-velocity of a fluid element** δu^{μ} (associated with a mode) can be decomposed in radial and angular parts:

$$\delta \boldsymbol{u} = \sum_{l,m} \underbrace{[\boldsymbol{W}_{l} \hat{\mathbf{r}} + \boldsymbol{V}_{l} \boldsymbol{\nabla} \boldsymbol{Y}_{m}^{l}]}_{l,m \, polar \, part: \, parity \, (-1)^{l}} + \underbrace{\boldsymbol{U}_{l} (\hat{\mathbf{r}} \times \boldsymbol{\nabla} \boldsymbol{Y}_{m}^{l})]}_{axial \, part: \, parity \, (-1)^{l+1}} e^{i\omega t}$$

Parity is defined to be the

change in sign under a

combination of reflection

in the equatorial plane

and rotation by π .

where $W_l(r)$, $V_l(r)$, $U_l(r)$ are radial eigenfunctions.

A linear perturbation of scalar quantities ($\delta \rho$, δp , etc.) can be written as a sum of quasi-normal modes that are characterized by the indices (l,m) of the spherical harmonic functions Y_m^l and harmonic time dependence $e^{i\omega t}$.

The **frequency** ω is a *complex number*:

1. real part corresponding to the frequency of oscillations:

$$\text{Re}(\omega) = \omega_n \sqrt{1 - \zeta_d^2}$$
, where ω_n is the natural frequency

2. imaginary part to the relaxation time: $1/\tau = \text{Im}(\omega) = -\omega_n \zeta_d$

PARITY OF PERTURBATIONS

• A general non-stationary asymmetric spacetime:

$$ds^{2} = -e^{\nu}dt^{2} + e^{\mu_{2}}dr^{2} + e^{\mu_{3}}d\theta^{2} + e^{\psi}(d\varphi - \omega dt - q_{2}dr - q_{3}d\theta)^{2}$$

- Two different types (or parity) of perturbations of the spherically symmetric metric:
 - 1. Polar (or "magnetic-type") perturbation has "even parity" $\pi = (-1)^l$. It gives small increments to the already nonzero metric coefficients $(e^{\nu}, e^{\mu_2}, e^{\mu_3}, e^{\psi})$.
 - 2. Axial (or "electric-type") perturbation has "odd parity" $\pi = (-1)^{l+1}$. This perturbation induces frame dragging and imparts a rotation to the compact star. It gives small values to the metric coefficients (ω, q_2, q_3) that were zero in $(ds^2)_0$.

In non-rotating stars (i.e. up to $O(\Omega)$) the **polar** and **axial perturbations** remain completely **decoupled**.

- Further more, for small-amplitude motions *there is no coupling* between the various spherical harmonics
- The equations of motion are considerably simplified by making an appropriate choice of "gauge" *the Regge–Wheeler choice* for the gravitational field!

TAXONOMY OF NS OSCILLATION MODES (I)

- **1. Purely polar fluid modes** are slowly damped modes analogous to the Newtonian fluid pulsations:
- **Pressure** (*p*) **modes:** pressure is the restoring force

 There are infinitely many of them. It experiences substantial fluctuations when these modes

are excited. They have nodes inside the star. Higher frequencies 4 - 7 kHz (p_1 mode), damping time – a few seconds. The radial displacement is much bigger than the tangential.

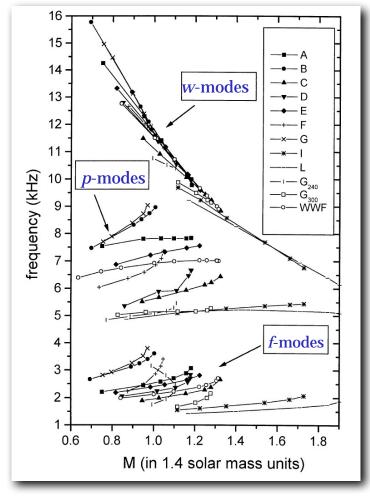
• **Fundamental (f) mode:** the first (nodeless) **p**-mode

The *f*-mode eigenfunctions have **no nodes** inside the star, and they grow towards the surface. Frequency of 1.5-3 kHz, Damping time – second (0.1-0.5 sec).

• **Gravity (** *g* **) modes:** driven by buoyancy (thermal/composition gradients)

Arise because gravity tends to smooth out material inhomogeneities along equipotential level-surfaces and buoyancy is the restoring force. Present only if we have temperature or composition gradients. Frequencies – normally below 100Hz, damping times – can even reach years. *The tangential displacement is much bigger than the radial.*

Typical spectra of *non-rotating* NSs without stratification. [Kokkotas et al. 2001]



TAXONOMY OF NS OSCILLATION MODES (II)

2. Purely axial fluid modes are not characterized by pulsations;

- a) rather, by a stationary differential rotation of the fluid inside the star.
- b) by gravitational waves which do not couple to the star at all.

• **Inertial (***i***) modes:** driven by rotation (Coriolis force)

Degenerate at zero frequency in nonrotating stars. In a rotating star, some inertial modes are generically unstable to the CFS instability; they have frequencies from zero to kHz and growth times inversely proportional to a high power of the star's angular velocity.

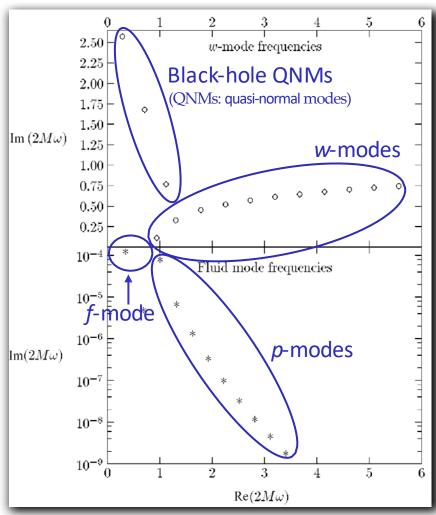
• **Rotation (** *r* **) mode:** special case of *i*-modes

A special case of inertial modes that reduce to the classical axial *r*-modes in the Newtonian limit. Generically unstable to the CFS instability with growth times as short as a few seconds at high rotation rates. (Chandrasekhar 1970; Friedman & Schutz 1978)

3. Coupled spacetime modes: both polar and axial modes.

• **Wave (***w***) modes:** dissipating energy through gravitational waves

Analogous to the quasi-normal modes of a black hole. They need dynamical spacetime. High frequency > 6 kHz, strongly damped modes with damping times of the order of 0.1 ms. *Very weak coupling to the fluid* and do not induce significant fluid motion.



[Andersson, Kokkotas, Schütz 1996, MNRAS 280, 1230]

EVEN-PARITY (POLAR) NORMAL MODES OF PULSATION

• The geometry of spacetime inside and around the equilibrium configuration fluctuates in a manner described by 10 functions, $h_{\mu\nu} = h_{\nu\mu}$, of $(t, r, \theta, \varphi) = (x^0, x^1, x^2, x^3)$.

$$\Rightarrow ds^2 = (ds^2)_0 + h_{\mu\nu} dx^{\mu} dx^{\nu}$$

• Using an appropriate gauge (Regge–Wheeler):

$$h_{\nu\mu}^{\text{polar}} = \begin{pmatrix} e^{\nu}H_0 & H_1 & 0 & 0 \\ H_1 & e^{\lambda}H_0 & 0 & 0 \\ 0 & 0 & r^2K & 0 \\ 0 & 0 & 0 & r^2\sin^2\theta K \end{pmatrix} Y_m^l$$

- For even-parity harmonics the equations of motion are a set of coupled equations for
 - a. the fluid-displacement functions V(r,t), W(r,t) and \Rightarrow reduced to only 5 functions!
 - b. the metric perturbation functions $H_0(r,t)$, $H_1(r,t)$, K(r,t).

The entire theory of non-radial even-parity-mode pulsations consists of the study of the "equations of motion" which govern the 8 functions, ξ^i , and $h_{\mu\nu}$, of (t, r, θ, ϕ) .

With the perturbed (polar mode) metric tensor:

$$ds^{2} = -e^{\nu} (1 + r^{\ell} H_{0} Y_{m}^{\ell} e^{i\omega t}) dt^{2} - 2i\omega r^{\ell+1} H_{1} Y_{m}^{\ell} e^{i\omega t} dt dr +$$

$$+ e^{\lambda} (1 - r^{\ell} H_{0} Y_{m}^{\ell} e^{i\omega t}) dr^{2} + r^{2} (1 - r^{\ell} K Y_{m}^{\ell} e^{i\omega t}) (d\theta^{2} + \sin^{2}\theta d\phi^{2})$$

The small-amplitude motion of the perturbed configuration is described by the **Lagrangian displacement** vector field $\xi^i(t, r, \theta, \varphi)$. In an appropriate gauge $\xi^t = 0$, and the other components of the displacement 3-vector are given by

$$\xi^r = r^{l-1}e^{-\lambda/2}WY_m^le^{i\omega t}, \qquad \xi^\theta = -r^{l-2}V\partial_\theta Y_m^le^{i\omega t}, \qquad \xi^\varphi = -r^l\left(r\sin\theta\right)^{-2}V\partial_\theta Y_m^le^{i\omega t}$$

and the corresponding perturbations in the fluid 4-velocity can be expressed by

$$\delta u_{\text{polar}}^{\mu} = e^{-\nu/2} [H_0 P_l(\cos \theta), e^{-\lambda/2} \partial_t W P_l(\cos \theta), -r^{-2} \partial_t V \partial_\theta P_l(\cos \theta), 0].$$

lead to a ODE system of a set of 4 equations:

$$\begin{split} H_1' &= -r^{-1} \big[l+1 + 2Me^{\lambda} r^{-1} + 4\pi r^2 e^{\lambda} (p-\rho) \big] H_1 + r^{-1} e^{\lambda} \big[H_0 + K - 16\pi (\rho+p) V \big] \;, \\ K' &= r^{-1} H_0 + \frac{1}{2} l(l+1) r^{-1} H_1 - \big[(l+1) r^{-1} - \frac{1}{2} v' \big] K - 8\pi (\rho+p) e^{\lambda/2} r^{-1} W \;, \\ W' &= -(l+1) r^{-1} W + r e^{\lambda/2} \big[\gamma^{-1} p^{-1} e^{-v/2} X - l(l+1) r^{-2} V + \frac{1}{2} H_0 + K \big] \;, \\ X' &= -l r^{-1} X + (\rho+p) e^{v/2} \big\{ \frac{1}{2} (r^{-1} - \frac{1}{2} v') H_0 + \frac{1}{2} \big[r \omega^2 e^{-v} + \frac{1}{2} l(l+1) r^{-1} \big] H_1 \\ &+ \frac{1}{2} (\frac{3}{2} v' - r^{-1}) K - \frac{1}{2} l(l+1) v' r^{-2} V - r^{-1} \big[4\pi (\rho+p) e^{\lambda/2} + \omega^2 e^{\lambda/2 - v} - \frac{1}{2} r^2 (r^{-2} e^{-\lambda/2} v')' \big] W \big\} \end{split}$$

The five perturbation function H_0 , K, V, and W are not all independent!

These functions must satisfy the following relationship as a consequence of Einstein's equation:

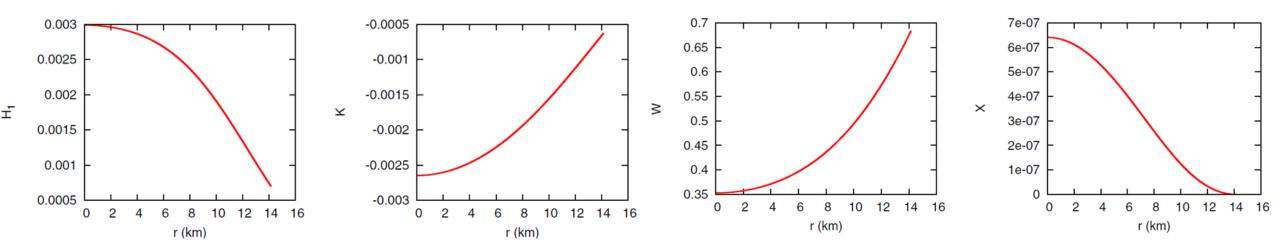
$$[3M + \frac{1}{2}(l+2)(l-1)r + 4\pi r^3 p]H_0 = 8\pi r^3 e^{-\nu/2} X - \left[\frac{1}{2}l(l+1)(M+4\pi r^3 p) - \omega^2 r^3 e^{-(\lambda+\nu)}\right]H_1$$
 algebraic relation
$$+ \left[\frac{1}{2}(l+2)(l-1)r - \omega^2 r^3 e^{-\nu} - r^{-1} e^{\lambda}(M+4\pi r^3 p)(3M-r+4\pi r^3 p)\right]K$$

In this equation the perturbation function X is defined by

$$X = \omega^2(\epsilon + p)e^{-\nu/2}V - \frac{p'}{r}e^{(\nu - \lambda)/2}W + \frac{1}{2}(\epsilon + p)e^{\nu/2}H_0$$

and V is to be thought of as the linear combination of H_1 , K, W, and X obtained by eliminating H_0 :

$$V = \omega^{-2} (\rho + p)^{-1} e^{\nu} \left[e^{-\nu/2} X + r^{-1} p' e^{-\lambda/2} W - \frac{1}{2} (\rho + p) H_0 \right]$$



Behavior of the perturbation functions of the ODE system inside the star.

[Chirenti, Silveira, Aguiar 2012, IJMP: Conf. Ser. 18 48-52]

PAST AND PRESENT COLLABORATIONS

Period	Partner institution	Collaborators	Research topic and scientific activity
April 2018	EBERHARD KARLS UNIVERSITÄT TÜBINGEN	Kostas Kokkotas	 Linear adiabatic radial oscillations of neutron stars: Study of "shooting" method for finding quasi-normal modes. Comparison of preliminary numerical results.
Oct. 2021 – present	l'Observatoire LUTH de Paris Laboratoire de l'Univers et de ses Théories	Philippe Grandclément Jérôme Novak Éric Gourgoulhon	 For NS models (including fast-rotating or magnetized) and import EoS tables directly from CompOSE: LORENE (set of C++ classes) to solve partial differential equations by means of multi-domain spectral methods. KADATH library (a more generic spectral solver), designed to describe functions as a finite sum of orthogonal functions known as the basis functions.
Sept. 2021 – present	Wigner	György Wolf Gyula Fodor	Research project "Nuclear matter properties from heavy-ion collisions to compact stars", supported by OTKA grant agreement No. K138277

Close collaboration with: Balázs Kacskovics and Mátyás Vasúth

Thank you very much for your kind attention!

Dániel Barta E-mail: barta.daniel@wigner.hu

