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Introduction
Event-by-event fluctuations are sensitive to phase
transitions and other collective phenomena in
systems formed in high-energy hadronic colli-
sions. Recently proposed fluctuation observable
[1], namely, the correlation coefficient between ra-
tios of identified particle yields measured in two
angular acceptance windows, has a number of use-
ful properties. In this work we demonstrate them
and show predictions from several models. These
calculations will serve as baselines for the future
measurements of this observable in real experimen-
tal data.

Fluctuations of ratio
Event-by-event fluctuations of the ratios of parti-
cles of different types, r = na/nb, can be described
by the integrated observable νdyn [2].
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⟨nb⟩ with Poissonian distribution.

The particles are taken from the whole detector
acceptance, so there are contributions from short-
range effects (decays, jets).

Angular correlations
Example of a differential observable is pairwise
correlation in azimuthal plane [3].

Another type of differential studies are the so-
called forward-backward correlations. If particles
are correlated in two separate rapidity intervals,
they were probably produced in the initial state
of a collision. Unfortunately, this quantity is sen-
sitive to the fluctuations of system volume. This
leads to trivial effects which can be overcome using
strongly intensive quantities, such as νdyn, νFB.

Correlation of ratios in η intervals
The differential observable νFB [1] shows the corre-
lation strength between the ratios in forward and
backward rapidity intervals.
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The properties of the νFB are the same as of the νdyn:

• = 0 if independent particle production, mea-
sures deviations from Poissonian behaviour;

• robust against volume fluctuations, efficiency
losses;

• not affected by short-range effects (decays, jets)
at large ηsep (not the case for the νdyn).

Toy model
Two ensambles, grand canonical
(GCE) and canonical (CE), are em-
ulated. In GCE pions and kaons are
generated from Poisson distribution,
while in CE they have strictly fixed
fraction. Short-range correlations are
simulated: repulsion for same-sign
pairs (re-generation of η if values are
close) and a higher probability to
have close η for opposite-sign pairs. 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6
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–Canonical suppression and positive impact from charge conservation is visible.

Thermal model
Thermal model equilibrated hadron resonance gas (HRG)
at the chemical freeze-out stage. Thermal-FIST package
[4] was used in Monte Carlo mode (HRG + radial flow +
decays) for CE and GCE.

–The pattern of suppression for the CE is observed.
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String-based models: HIJING (Pb–Pb) and PYTHIA (pp)

Calculations in MC
generators, based on
Lund string frag-
mentation, at LHC
energies.

–Near-side peak for
opposite-sign pairs.

–Same-sign pairs are
nearly zero, which
reflects binomial
sampling of angles.

–Consistent results
between HIJING
and PYTHIA.

Rapidity windows
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Azimuthal windows
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Conclusions and future plans
Angular correlations between ratios of identified
particle yields in two rapidity (as well as az-
imuthal) windows were calculated in different
models. It was shown that νFB is a robust observ-
able, which allows to suppress contributions from
short-range correlations. The canonical suppres-
sion lowers νFB values, while the charge conserva-
tion gives positive impact.
In the future, νFB will be calculated for data of
Pb–Pb at

√
sNN = 5.02 TeV and pp at

√
sNN = 13

TeV collisions with ALICE detector.
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