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Finite size effects



Size of the physical system

What are the typical sizes?

• Typical size of the fireball in heavy ion collisions is a few fm.
• Neutron stars and compact stars built up from strongly

interacting matter (with extra structure) with a size ∼ 10 km.
• Several models with finite (different) size.
• In field theoretical calculations (LSM, NJL, DS, etc) usually the size is infinite.

Why does it matter?

• It can be seen that the properties of the system can change significantly.
• One example: In the phase diagram of QCD the CEP

(and the first order region) might disappear.
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Volume dependence

Studying finite size effects.

• General consideration in statistical physics: Finite size scaling theory (FSS).
• Specially for strongly interacting systems: Studying the volume effects in our models.

Models with finite volume: Straightforward.

Models with infinite volume: How to mimic the volume effect?

It is usual ta have constraint
in momentum space.

• Discretization:
∫
dp→

∑
n

• Low momentum cutoff:
∫ ∞

0
dp→

∫ ∞

λ
dp
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Volume dependence

Studying finite size effects.

• General consideration in statistical physics: Finite size scaling theory (FSS).
• Specially for strongly interacting systems: Studying the volume effects in our models.

Models with finite volume: Straightforward.

Models with infinite volume: How to mimic the volume effect?

It is usual ta have constraint
in momentum space.

• Discretization:
∫
dp→

∑
n

• Low momentum cutoff:
∫ ∞

0
dp→

∫ ∞

λ
dp

Tested also in HRG model:
Karsch, Morita and Redlich:
Phys. Rev. C 93, no.3, 034907 (2016)
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Volume dependence

Studying finite size effects.

• General consideration in statistical physics: Finite size scaling theory (FSS).
• Specially for strongly interacting systems: Studying the volume effects in our models.

Models with finite volume: Straightforward.

Models with infinite volume: How to mimic the volume effect?

It is usual ta have constraint
in momentum space.

• Discretization:
∫
dp→

∑
n

• Low momentum cutoff:
∫ ∞

0
dp→

∫ ∞

λ
dp

Other effects – eg. surface – are not taken into account.
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Finite size effects

There are already results in HRG, (P)NJL, (P)LSM, DS, etc. calculations.
For example for the phase diagram:

LSM
Palhares, Fraga and Kodama,
J. Phys. G 38, 085101 (2011)

PNJL
Bhattacharyya, Deb, Ghosh, Ray and Sur,
Phys. Rev. D 87, no.5, 054009 (2013)

QM model FRG
Tripolt, Braun, Klein and Schaefer,
Phys. Rev. D 90, no.5, 054012 (2014)

DS approach
Bernhardt, Fischer, Isserstedt and Schaefer,
Phys. Rev. D 104, no.7, 074035 (2021)
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Extended linear sigma model



ELSM

Vector and axial vector meson Extended Polyakov Linear Sigma Model.
Effective model to study the phase diagram of strongly interacting matter at finite T and µ.
Phys. Rev. D 93, no. 11, 114014 (2016)

• Linear Sigma Model: "simple" quark-meson model

• Extended: Vector and Axial vector nonets (besides to Scalar and Pseudoscalar)
Isospin symmetric case: 16 mesonic degrees of freedom.

• Polyakov: Polyakov loop variables give 2 order parameters Φ, Φ̄.

• The mesonic Lagrangian Lm with chiral symmetry

SU(3)L × SU(3)R × U(1)V × U(1)A → SU(2)I × U(1)V

broken explicitly (and spontaneously) and with the axial anomaly taken into account
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ELSM

• Lm contains the dynamical, the symmetry breaking,
and the meson-meson interaction terms.

• U(1)A anomaly and explicit breaking of the chiral symmetry.
• Each meson-meson terms upto 4th order that are allowed by the chiral symmetry.

• Constituent quarks (Nf = 2 + 1) in Yukawa Lagrangian

LY = ψ̄ (iγµ∂µ − gF (S − iγ5P )− gV γ
µ(Vµ + γ5Aµ))ψ (1)

In the 2016 version gV = 0 was used. Phys. Rev. D 104, 056013 (2021)

• SSB with nonzero vev. for scalar-isoscalar sector ϕN , ϕS .
⇒ mu,d =

gF

2
ϕN , ms =

gF√
2
ϕS fermion masses in LY .

• Mean field level effective potential → the meson masses and the thermodynamics
are calculated from this.
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The grand potential

Thermodynamics: Mean field level effective potential:
• Classical potential.
• Fermionic one-loop correction with vanishing fluctuating mesonic fields.

ψ̄ (iγµ∂µ − diag(mu,md,ms))ψ

Functional integration over the fermionic fields.
The momentum integrals are renormalized.

• Polyakov loop potential.

Ω(T, µq) = UCl + tr
∫
K

log
(
iS−1

0

)
+ U(Φ, Φ̄) (2)

Field equations (FE):
∂Ω

∂Φ̄
=
∂Ω

∂Φ
=

∂Ω

∂ϕN
=

∂Ω

∂ϕS
= 0 (3)

Curvature meson masses:

M2
ab =

∂2Ω

∂φa∂φb

∣∣∣∣
{φi}=0

(4)
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ψ̄ (iγµ∂µ − diag(mu,md,ms))ψ

Functional integration over the fermionic fields.
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Parametrization of the model

The model parameters are fitted with χ2 method, using ∼ 30 physical quantities like meson
masses, decay widths or the pion decay constant.

The parameters:

m2
0,m

2
1, g1, g2, λ1, λ2, h1, h2, h3, δS , c, gF , hN , hS

⇒ ϕN and ϕS are in the parametrization while hN and hS are calculated with the FEs

In the finite volume calculation

Fix hN , hS at L = ∞
Calculate ϕN , ϕS with FEs

Fix ϕN , ϕS at L = ∞
Calculate hN , hS with FEs

Fixed external fields with volume dependent fπ and mq .
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Results



Meson and constituent quark masses

If the external fields are fixed ϕN,S scales with the size below ∼ 5 fm.
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Order parameter

The initial (vacuum) value of the order parameter ϕN drops rapidly under ∼ 2.5 fm.
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Scaling of pion mass

The scaling of the pion mass shift R = (mπ(L)−mπ(∞)) /mπ(∞)
compared to the results shown in Phys. Rept. 707-708, 1-51 (2017)
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Baryon fluctuations
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Phase diagram and critical end point
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Phase diagram and critical end point – ϕN/S fixed
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Summary and outlook

• Finite volume effects on thermodynamics and the phase diagram of strong interaction
was studied via a low momentum cutoff.

• The meson masses and other physical quantities start to significantly change
with the system size under ∼ 5 fm.

• A decreasing trend in the pseudocritical temperature
(using fixed external fields) was found.

• The critical end point moves to lower temperature and higher chemical potential
with the decreasing size.

• The CEP and the first order region disappear at a small finite size
(∼ 2.5 fm for fixed external fields).

• Further study of the thermodynamics.
• Further study of the scaling of physical quantities.
• Open questions about the phase diagram.
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Thank you!



Backup: Thermodynamics – pressure – energy density

•
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Backup: Lagrangian

The Mesonic Lagrangian built up from the

Lµ =
∑
a

(V µ
a +Aµ

a)Ta, Rµ =
∑
a

(V µ
a −Aµ

a)Ta, M =
∑
a

(Sa + iPa)Ta,

fields as

Lm = + Tr
[(

DµM
)† (

D
µ
M
)]

− m0Tr
(
M

†
M
)
− λ1

[
Tr
(
M

†
M
)]2

− λ2

[
Tr
(
M

†
M
)2]

+ c
(
detM + detM

†
)

+ Tr
[
H
(
M + M

†
)]

−
1

4
Tr
[
LµνL

µν
+ RµνR

µν]
+ Tr

[(
m2

1

2
+ ∆

)(
LµL

µ
+ RµR

µ)]

+
h1

2
Tr
(
ϕ
†
ϕ
)

Tr
[
LµL

µ
+ RµR

µ]
+ h2Tr

[(
MRµ

)† (
MR

µ)
+
(
LµM

)† (
L

µ
M
)]

+ 2h3Tr
[
RµM

†
L

µ
M
]

− 2g2Tr{Lµν
[
L

µ
, L

ν]} + Tr{Rµν
[
R

µ
, R

ν]
+g3{Tr

[
L

µ
L

ν
LµLν

]
+ Tr

[
R

µ
R

ν
RµRν

]
} + g4{Tr

[
L

µ
LµL

ν
Lν
]
+ Tr

[
R

µ
RµR

ν
Rν
]
}

+g5Tr
[
R

µ
Rµ
] [

L
ν
Lν
]
+ g6{Tr

[
L

µ
Lµ
] [

L
ν
Lν
]
+ Tr

[
R

µ
Rµ
] [

R
ν
Rν
]
},

where

Dµ = ∂µM − ig1(LµM −MRµ)−ieAµ [T3,M ]

Lµν = ∂µLν − ieAµ [T3, L
ν ]− {∂νLµ − ieAν [T3, L

µ]}
Rµν = ∂µRν − ieAµ [T3, R

ν ]− {∂νRµ − ieAν [T3, R
µ]}



Backup: Field equations

The explicit form of the field equations (FEs)

−
d

dΦ

(
U
(
Φ, Φ̄

)
T 4

)
+

6

T 3

∑
f

∫
d3p

(2π)3

 e
−βE−

f
(p)

g−f (p)
+
e
−2βE+

f
(p)

g+f (p)

 = 0

−
d

dΦ̄

(
U
(
Φ, Φ̄

)
T 4

)
+

6

T 3

∑
f

∫
d3p

(2π)3

 e
−βE+

f
(p)

g+f (p)
+
e
−2βE−

f
(p)

g−f (p)

 = 0

m2
0ϕN +

(
λ1 +

λ2

2

)
ϕ3N + λ1ϕNϕ

2
S −

c
√
2
ϕNϕS − h0N +

1

2
gF

∑
l=u,d

⟨q̄lql⟩T = 0

m2
0ϕS + (λ1 + λ2)ϕ

3
S + λ1ϕ

2
NϕS −

√
2c

4
ϕ2N − h0S +

1
√
2
gF ⟨q̄sqs⟩T = 0

(5)

where

⟨q̄f qf ⟩T = 4Ncmf

[
−
m2

f

16π2

(
1

2
+ ln

m2
f

M2
0

)
+ Tf

]
(6)



Backup: Meson masses

The curvature meson masses are calculated from the grand potential.

For the (pseudo)scalars: Tree-level + fermionic vacuum + fermionic matter

M2
ab =

∂2Ω

∂φa∂φb
= m2

ab + ∆m2
ab + δm2

ab (7)
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Backup: Meson masses

The curvature meson masses are calculated from the grand potential.

For the (pseudo)scalars: Tree-level + fermionic vacuum + fermionic matter

M2
ab =

∂2Ω

∂φa∂φb
= m2

ab + ∆m2
ab + δm2

ab (7)

Tree-level : S-V and P-A mixing in the quadratic (after SSB) part of the Lagrangian

Shift the A/V fields and a "wavefunction renormalization factor" for the P/S fields.
⇒ The S/P masses get an extra factor M2 → Z2M2.



Backup: low momentum cut in the fermionic vacuum part

The fremionic vacuum part with cutoff and renormalization:

ΩV
ferm =− 2Nc

∑
f=u,d,s

∫
d3p

(2π)3
Ef (p)Θ(Λ− p)Θ(p− λ) = −6

4π

(2π)3

∑
f=u,d,s

∫ Λ

λ
dp p2Ef (p)

=−
9

4π2
Λ4 −

3g2

8π2

(
ϕ2N + ϕ2S

)
Λ2 +

3g2

64π2
log
(
2Λe−1/4

) (
ϕ4N + ϕ4S

)
−

3

8π2

∑
f=u,d,s

[
m4

f log
(
λ+

√
λ2 +m2

f

)
− λ

√
λ2 +m2

f

(
2λ2 +m2

f

)]

R−→−
3

8π2

∑
f=u,d,s

m4
f log

λ+
√
λ2 +m2

f

M0

− λ
√
λ2 +m2

f

(
2λ2 +m2

f

) ,
(8)



Backup: low momentum cut in the fermionic matter part

∫
d3p

(2π)3
I(E)Θ(p− λ) =

4π

(2π)3

∫ ∞

λ
dp p2I(E) =

4π

(2π)3

∫ ∞
√

λ2+m2
dE

p

E
I(E) (9)

0.2 0.4 0.6 0.8 1.0 1.2 1.4

0.0001

0.0002

0.0003

0.2 0.4 0.6 0.8 1.0 1.2 1.4

0.00005

0.00010

0.00015

0.00020

0.00025

0.00030

Figure: The integrand for cquad with m = 1, T = 0.1 and λ = 0.0, 0.2 GeV respectively.

Ω
(0)m
q̄q (T, µ) =− 2T

∫
d3p

(2π)3

[
log g+f (p) + log g−f (p)

]
Θ(p− λ)

=−
T

π2

∫ ∞

λ
dpp2

[
log g+f (p) + log g−f (p)

] (10)
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