GLUEBALL-GLUEBALL SCATTERING AND THE GLUEBALLONIUM

ARXIV:2110.05582

21st Zimanyi School, winter workshop on heavy ion physics

ENRICO TROTTI 1 IN COLLABORATION WITH F. GIACOSA^{1,2} AND A. PILLONI^{3,4}

THURSDAY, DECEMBER 9th 2021

¹Institute of Physics, Jan Kochanowski University, ul. Uniwersytecka 7, 25-406, Kielce, Poland

²INSTITUTE FOR THEORETICAL PHYSICS, J. W. GOETHE UNIVERSITY, MAX-VON-LAUE-STR. 1, 60438 FRANKFURT, GERMANY.

³INFN SEZIONE DI CATANIA, VIA SANTA SOFIA 64, I-95123 CATANIA, ITALY

⁴DIPARTIMENTO DI SCIENZE MATEMATICHE E INFORMATICHE, SCIENZE FISICHE E SCIENZE DELLA TERRA, UNIVERSITÀ DEGLI STUDI DI MESSINA, I-98166 MESSINA, ITALY

OVERVIEW

- Mesons and glueballs
- Scattering of two scalar glueballs
- Bound state of two glueballs: glueballonium
- Effect of other glueballs on the scattering
- Conclusions

CLASSIFICATION OF MESONS

q̄q nonets	J ^{PC}	Flavor states
Scalar (S)	O^{++}	$a_{o}^{\pm,o}$, $K_{o}^{*\pm,o,\bar{o}}$, σ_{N} , σ_{S} (f_{o}^{L} , f_{o}^{H} *)
Pseudoscalar (P)	o^{-+}	$\pi^{\pm, ext{o}}$, K $^{\pm, ext{o},ar{ ext{o}}}$, $\eta_{ ext{N}}$, $\eta_{ ext{S}}$ $(\eta,\ \eta')$
Vector (V_{μ})	1	$ ho^{\pm, o}$, K* $^{\pm, o, ar{o}}$, $\omega_{ m N}$, $\omega_{ m S}$ ($\omega, \ \phi$).
Axial-vector (A $_{\mu}$)	1++	$a_1^{\pm,o}$, $K_{1,A}^{\pm,o,\bar{o}}$, $f_{1,A}^N$, $f_{1,A}^S$ (f_1, f_1') .
Pseudovector (B_{μ})	1+-	$b_1^{\pm,o}$, $K_{1,B}^{\pm,o,\bar{o}}$, $f_{1,B}^N$, $f_{1,B}^S$ (h_1, h_1').

Table: Examples of nonets of conventional mesons, their spin and parity, and the flavor states. * means that the physical states are unknown

■ QCD predicts also exotic mesons as tetraquarks $(\bar{q}\bar{q}qq)$ and glueballs

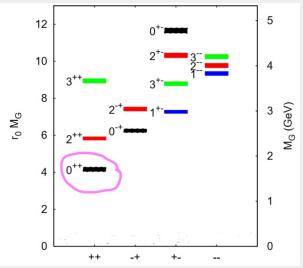
GLUEBALLS

- Gluons carry color charge and interact strongly with each other
- Several lattice QCD simulations of glueballs [arXiv:nucl-th/0309068, Morningstar,Peardon].
- Possible state that is predominantly a glueball state is the resonance fo(1710) [arXiv:14.08.4921v1 [hep-ph], Janowski et al.]

$$\begin{array}{c} \sigma_{\mbox{\it N}} \approx (\bar{u}u + \bar{d}d)/\sqrt{2} \\ \sigma_{\mbox{\it S}} \approx (\bar{s}s) \end{array}$$

```
 f_0(1370): 83\% \sigma_N, 6\% \sigma_S, 11\% G , 
 f_0(1500): 9\% \sigma_N, 88\% \sigma_S, 3\% G , 
 f_0(1710): 8\% \sigma_N, 6\% \sigma_S, 86\% G .
```

We worked with a single scalar glueball with $m_G = 1.7$ GeV. Below: plot from Lattice QCD: a glueball spectrum is found.

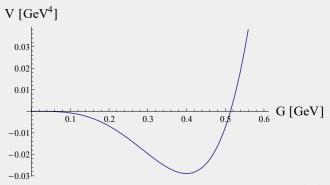


Y. Chen et al, Phys. Rev. D73, 014516 (2006)

SCATTERING OF TWO SCALAR GLUEBALLS: TREE-LEVEL

Now only the YM sector of QCD will be considered.

$$\mathscr{L}_{dil} = \frac{1}{2} (\partial_{\mu} G)^2 - V(G) = \frac{1}{2} (\partial_{\mu} G)^2 - \frac{1}{4} \frac{m_G^2}{\Lambda_G^2} \left(G^4 ln \left| \frac{G}{\Lambda_G} \right| - \frac{G^4}{4} \right)$$



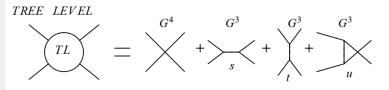
A. A. Migdal and M. A. Shifman, "Dilaton Effective Lagrangian In Gluodynamics," Phys. Lett.B114, 445 (1982)

TL AMPLITUDE

Taylor expansion around min $V(G = \Lambda_G \approx 0.4 \text{ GeV})$

$$V(G) = V(\Lambda_G) + \frac{1}{2} m_G^2 G^2 + \frac{1}{3!} \left(5 \frac{m_G^2}{\Lambda_G^2} \right) G^3 + \frac{1}{4!} \left(11 \frac{m_G^2}{\Lambda_G^2} \right) G^4 + \frac{1}{5!} \left(6 \frac{m_G^2}{\Lambda_G^2} \right) G^5 + \dots$$

$$A(s,t,u) = -11\frac{m_{G}^{2}}{\Lambda_{G}^{2}} - \left(5\frac{m_{G}^{2}}{\Lambda_{G}}\right)^{2} \frac{1}{s - m_{G}^{2}} - \left(5\frac{m_{G}^{2}}{\Lambda_{G}}\right)^{2} \frac{1}{t - m_{G}^{2}} - \left(5\frac{m_{G}^{2}}{\Lambda_{G}}\right)^{2} \frac{1}{u - m_{G}^{2}}$$



l-th scattering length

 $k=\frac{1}{2}\sqrt{s-4m_{\rm G}^2}$: 3-momentum of any particle in the center of mass. $s_{\rm th}\equiv 4m_{\rm G}^2$

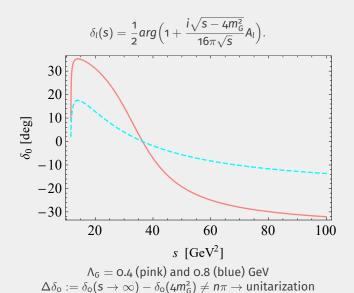
$$A_l(s) = \frac{1}{2} \int_{-1}^{+1} d\cos\theta \ A(s, \cos\theta) P_l(\cos\theta),$$

$$A_{O}(s) = -11 \frac{m_{G}^{2}}{\Lambda_{G}^{2}} - 25 \frac{m_{G}^{4}}{\Lambda_{G}^{2}} \frac{1}{s - m_{G}^{2}} + 50 \frac{m_{G}^{4}}{\Lambda_{G}^{2}} \frac{\log\left(1 + \frac{s - 4m_{G}^{2}}{m_{G}^{2}}\right)}{s - 4m_{G}^{2}}$$

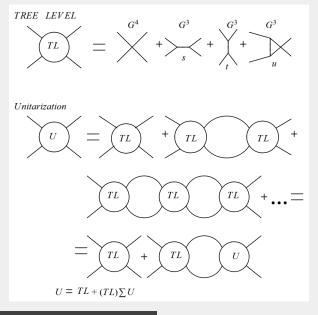
$$a_{l} = rac{A_{l}(4m_{G}^{2})}{32\pi m_{G}k^{2l}} \stackrel{l=0}{\equiv} rac{1}{32\pi m_{G}} rac{92m_{G}^{2}}{3\Lambda_{G}^{2}}$$

$$a_{\rm o}(s_{th}) = \frac{23m_G}{24\pi\Lambda_G^2}$$

$$(a_l = rac{25(l!)^24^{l-2}}{\pi \ (2l+1)(2l)!} rac{1}{\Lambda_G^2m_G^{2l-1}}$$
, for $l \geq 2$)



SCHEMATIC REPRESENTATION OF THE UNITARIZATION THROUGH LOOPS



Unitarization (s,d,g wave)

Loop function $\Sigma(s)$ in such a way to:

- -preserve the pole corresponding to $s = m_G^2$
- $-A_l^{unit}(s=3m_G^2)=\infty$: the branch point $s=3m_G^2$ is generated by the single particle pole for m_G^2 along the t and u channels. It follows that:

$$\Sigma(s) = \frac{(s - m_G^2)(s - 3m_G^2)}{\pi} \int_{4m_G^2}^{\infty} \frac{\frac{s_A' - m_G^2}{4c - m_G^2}}{(s' - s)(s' - 3m_G^2)(s' - m_G^2)} ds'$$

$$0.005 \atop 0.004 \atop 0.003 \atop 0.002 \atop 0.001 \atop 0.000 \atop -0.001} \underbrace{0.001 \atop s \text{ [GeV^2]}}$$

 $Re\Sigma$ (orange) vs. $Im\Sigma$ (black)

The unitarized amplitude is so given by:

$$A_l^{unit}(s) = [A_l^{-1}(s) - \Sigma(s)]^{-1}$$

Now:

$$\delta_l^{unit}(s) = \frac{1}{2} arg \left[1 + 2i \frac{\sqrt{\frac{s}{4} - m_G^2}}{16\pi\sqrt{s}} A_l(s)^{unit} \right]$$

and

$$a_o^U(s_{th}) \left(= \frac{1}{32\pi m_G} A_o^U(s) \right)_{s=s_{th}} = \frac{1}{32\pi m_G} \frac{1}{\frac{3\Lambda_G^2}{92m_G^2} - 0.0028715}.$$

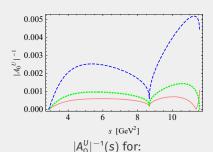
With our value of m_G :

$$a_{o}(s_{th}) = \infty \leftrightarrow \Lambda_{G} = \Lambda_{G,crit} \approx 0.504 \text{ GeV}$$

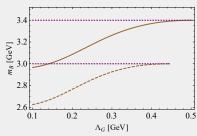
REMARKS ON THE UNITARIZATION SCHEME

- Twice-subtracted loop ($s = m_G^2, 3m_G^2$): single-particle pole and branch point fixed to the ones of TL amplitude. Once-subtracted loop ($s = m_G^2$): ghost with negative norm
- Results depend not only on the chosen subtraction, but also on the applied unitarization scheme (overall phenomenology expected similar)
- Multiparticle states contribute to the imaginary part: $Im\Sigma$ not valid up to $\infty \to \text{Cutoff function (form not known) interpretable as G wf overlap: this would introduce a model dependence on the result.$

THE GLUEBALLONIUM



$$\Lambda_{G,crit}:a_o^U(s=s_{th})|_{\Lambda_G=\Lambda_{G,crit}}=\infty$$

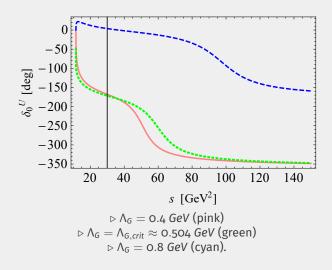


Mass of the glueballonium as function of Λ_{G}

For $m_G=$ 1.5 and 1.7 GeV: $\Lambda_{G,crit}\sim$ 0.445 and 0.504 GeV.

For $\Lambda_G > \Lambda_{G,crit}$, \nexists bound state.

13



 $\Delta \delta_{
m o}^{\it U}
ightarrow -2\pi
ightarrow {
m Levinson}$ theorem fulfilled

OTHER GLUEBALLS EFFECT: HEAVY SCALAR

H: other glueball entering the s-channel (heavy scalar and non-scalar)

$$\mathcal{L} = \mathcal{L}_{\text{dil}} + \frac{1}{2} (\partial_{\mu} H)^2 - \frac{\alpha}{2} G^2 H^2 - \beta H^4$$

No terms GH^3 and G^3H : symmetry $(G, H) \rightarrow (-G, -H)$ required (scalar).

No 3-leg interaction terms (H^2G ,...): break dilatation invariance (only $\ln \left| \frac{G}{\Lambda_G} \right|$ does it in the proper way).

No $ln \left| \frac{H}{\Lambda_H} \right|$: another scale would be needed (not done here).

The interaction term proportional to G^2H^2 affects the scattering via the an intermediate HH loop, relevant at $(2m_H)^2 \sim 36$ GeV², far from threshold.

NON SCALAR JPC

No J > 2 for dilaton invariance.

	Р	С
o ⁻⁺	X	✓
o^{+-}	Х	X
0	1	X
1 ⁺⁺	X	✓
1-+	1	✓
1+-	Х	X
1	✓	Х

Table: Symmetries for XG^2 terms involving a heavy nonscalar glueball X and two scalar glueballs G.

The term in \mathscr{L} corresponding to the coupling XG^2 , $X \equiv 1^{-+}$, is equivalent to $(\partial_{\mu}G)^2G^2$, which breaks dilatation invariance.

CONCLUSIONS

- TL is not enough.
- Unitarized amplitudes for the l-th waves (l=0,2,4).
- The evaluated scattering lengths and phase shifts could be simulated on the lattice, hence a comparison is possible.
- Emergence of a 2 scalar glueball bound state, that we named "glueballonium", could be found on the lattice and/or in experiments (PANDA).
- $m_B(\Lambda_G)$. \exists bound state if $\Lambda_G < \Lambda_{G,crit} \simeq 0.504$ GeV if $m_G = 1.7$ GeV
- Other glueballs are not expect to sizably affect the results.
- FOR FUTURE: scattering of other glueballs or using other unitarization schemes.

Thank you for the attention

Work supported by the project AKCELERATOR ROZWOJU Uniwersytetu Jana Kochanowskiego w Kielcach (Development Accelerator of the Jan Kochanowski University of Kielce), co-financed by the European Union under the European Social Fund, with no. POWR.03.05.00-00-Z212/18.

Decay $G \to \pi\pi$ takes the form (inserting a nonzero pion mass):

$$\Gamma_{G\rightarrow\pi\pi}=6\frac{\sqrt{\frac{m_G^2}{4}-m_\pi^2}}{8\pi m_G^2}\left(\frac{m_\sigma^2}{2\Lambda_G}\right)^2.$$

For $m_G \simeq$ 1.7 GeV, $m_\sigma \simeq$ 1.3 GeV ($\simeq f_0$ (1370)), $\Lambda_G \simeq$ 0.4 GeV: $\Gamma_{G \to \pi\pi} \simeq$ 0.310 GeV. SU(3) extension:

$$\Gamma_{G\to KK} = 8 \frac{\sqrt{\frac{m_G^2}{4} - m_K^2}}{8\pi m_G^2} \left(\frac{m_\sigma^2}{2\Lambda_G}\right)^2 \,, \qquad \Gamma_{G\to \eta\eta} = 2 \frac{\sqrt{\frac{m_G^2}{4} - m_\eta^2}}{8\pi m_G^2} \left(\frac{m_\sigma^2}{2\Lambda_G}\right)^2 \,. \label{eq:gamma_fit}$$

 $\Gamma_{G \to KK} \simeq$ 0.340 GeV and $\Gamma_{G \to nn} \simeq$ 0.080 GeV.

The sum of the 3 pseudoscalar channel: 0.729 GeV.

 \oplus G \to $\rho\rho\to$ 4 π , expected sizable,cannot be determined within this simple approach (using V(G, σ , π)).

Such a glueball would have a total decay of about 1 GeV: would not be observable.

$$\mathcal{L}_{YM} = -\frac{1}{\iota} \mathsf{G}^a_{\mu\nu} \mathsf{G}^{a,\mu\nu}, \qquad \qquad \mathsf{G}^a_{\mu\nu} = \partial_\mu \mathsf{A}^a_\nu - \partial_\nu \mathsf{A}^a_\mu + g_\mathsf{o} \mathsf{f}^{abc} \mathsf{A}^b_\mu \mathsf{A}^c_\nu$$

gluonic quantum fluctuation: dilatatation symmetry

$$g_{ ext{o}} \stackrel{ ext{trace}}{=} g(\mu) \ \Rightarrow \partial_{\mu} J^{\mu}_{ ext{dil}} = (T^{\mu}_{\mu})_{ ext{YM}} = rac{eta(g)}{2a} G^{a}_{\mu
u} G^{a,\mu
u}
eq 0, eta(g) = \partial g/\partial \ln \mu$$

At one loop
$$(\beta(g) = -bg^3 \& b = 11N_c/(48\pi^2))$$
: $g^2(\mu) = \frac{1}{2b \ln(\mu/\Lambda_{VM})}$, $\Lambda_{YM} \approx 250 \text{ MeV}$

Nonvanishing expectation value of the trace anomaly:

$$\left\langle T_{\mu}^{\mu}\right\rangle_{YM}=-\frac{11N_{c}}{24}\left\langle \frac{\alpha_{s}}{\pi}\,G_{\mu\nu}^{a}G^{a,\mu\nu}\right\rangle =-\frac{11N_{c}}{24}C^{4}$$

GLUEBALL FIELD

Gluons $\xrightarrow[confinement]{}$ not the asymptotic states of the theory Scalar field G describing scalar glueball & trace anomaly at the composite level $\mathcal{L}_{\text{dil}} = \frac{1}{2}(\partial_{\mu}G)^2 - V(G)$

$$\partial_{\mu}J_{\mathrm{dil}}^{\mu}=4V-G~\partial_{G}V\propto G^{4}~\mathrm{only~if}~V(G)=rac{1}{4}rac{m_{G}^{2}}{\Lambda_{G}^{2}}\Biggl(G^{4}ln\left|rac{G}{\Lambda_{G}}
ight|-rac{G^{4}}{4}\Biggr)$$

$$\Lambda_{\rm G}\simeq$$
 0.4 GeV: $\left[\partial_{\mu}J_{\rm dil}^{\mu}=-rac{1}{4}rac{m_{\rm G}^{2}}{\Lambda_{\rm G}^{2}}\,G^{4}
ight]$ $igorightarrow$ $\left\langle T_{\mu}^{\mu}
ight
angle_{
m YM}$: Dilaton field saturates the trace of the dilatation current.