

National Research, development and Innovation Office Hungary

Anna Fehérkuti ELTE, Physics Msc, II. Year Advisor: dr. Gábor Veres ELTE TTK, Atomfizikai Tanszék

Feasibility studies of charge exchange measurements in pp collisions

Zimányi School 9. 12. 2021.

Supported by the ÚNKP-20-2 and ÚNKP-19-1 New National Excellence Program of the Ministry for Innovation and Technology from the source of the National Research, Development and Innovation Fund. 1 Further special thanks to NKFIH OTKA 128713 grant.

Muon Mystery

- Measurements of ultra high energy cosmic rays (eg. at Pierre Auger Observatory)
- Muon component / shower not reproduced by simulations

 \rightarrow could this be measured in the laboratory (at LHC energies)?

See whether simulations predict measured data well
 ^{2/20}

~mb order of magnitude cross-section

 \rightarrow simulations with CRMC (pp collisions at $\sqrt{s} = 7$ TeV) $^{3/20}$

The ZDC at CMS

Energy distribution in the ZDC

ch.ex.: characteristically high(er) energies
 → suitable quantity for selection

(nonphysical cut at 5/20 2100 GeV due to the MC for the p_{loss} of the initial proton)

ROC curve for the ZDC energy cut

Further detectors of CMS

Energy asymmetry in the HF

EPOS 1.99 pp √s = 7 TeV

- Asymmetric for charge exchange ← high energy neutron went to ZDC+ 8 / 20
- Small effect \rightarrow selection used together with the E_{zDC} cut

HF total energy distributions

EPOS 1.99 pp $\sqrt{s} = 7$ TeV

in ZDC for $E_{HF} > 0$ events Ε neutron EPOS 1.99 pp √s = 7 TeV 0.06 ×10⁻³ Count/Event/GeV 0.05 0.04 0.03 0.02 Without ch.ex., if $E_{HF} > 0$ ch.ex., if $E_{HF} > 0$ Without ch.ex. 0.01 ch.ex. 0₀ 500 1500 2000 2500 3000 3500 1000 4000 Total E_n in ZDC+ [GeV]

 Rejecting many events without ch.ex, while ch.ex. barely changed

Comparing ROC curves

Further detectors of CMS

Bias test I.

- Tracker not used for event selection: no autocorrelation
- dN/dŋ in ŋ<|0.5| region (midrapidity) for π^{\pm}
- Same quantity for pure charge exchange dataset: true value
- Greater asymmetry requires more particles
 → not independent

Bias test II.

EPOS 1.99 pp \sqrt{s} = 7 TeV, E_{ZDC+} > 2140 GeV, E_{HF} > 0

• Weak dependence on the choice of the working point

 \rightarrow new working point chosen to match the midrapidity true value

More models: final ROC

pp $\sqrt{s} = 7 \text{ TeV}, \text{E}_{\text{ZDC+}} > 2140 \text{ GeV}, \text{E}_{\text{HF}} > 10 \text{ GeV}, \text{ROC by E}_{|\text{HF+-HF-}|}$ Purity **EPOS 1.99** 0.9 EPOS-LHC 0.8 PYTHIA SIBYLL 2.3c 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0 0.2 0.6 0.8 0.4Efficiency

- ROC for the asymmetry in the HF
- Huge difference in the predictions

 Need data for validation

More models: bias tests

- Same tendencies
- Discrepancies between models

Predictions

- Working point for each model (obtained by the same matching method with appropriate bias tests)
- Really different predictions
 → very uncertain cut value

Quantity	EPOS 1.99	EPOS-LHC	PYTHIA	SIBYLL 2.3c	Average
Efficiency [%]	48.6	49.1	57.1	50.7	51.4 ± 5.7
Purity [%]	63.1	55.5	34.2	25.4	44.6 ± 18.6
∆Energy [GeV]	102.4	95.0	75.7	111.0	96.0±14.9
Midrapidity vs true [%]	0.0	0.0	0.0	0.0	
Av. mom. vs true [%]	0.7	1.9	2.0	3.8	

pp $\sqrt{s} = 7$ TeV, E_{2DC1}>2140 GeV, E_{HF}>10 GeV, ROC by E_{HF4-HF4}

Summary

Event selection for EPOS 1.99:

- Total energy in ZDC > 2140 GeV
- & E_{HF} > 10 GeV
- & |E_{HF+} E_{HF-}| > 102 GeV:

~63% are charge exchange (purity)

~49% of charge exchange accepted (efficiency)

Using this cut for charged pions in Tracker:

- For dN/d_{n} : reproduce the true value
- For $< p_{\tau} >$: agreement with the true value within 1%
- Very large discrepancies in predictions of different models

Main further plans

- Include CMS simulation

 → detector-specific effects
 (ongoing work)
- p+Pb analysis (ongoing work)
- Measured data

- 2016 p+Pb [https://cds.cern.ch/record/2235235?]
- Run3 pO, OO? (Collisions in the atmosphere)
- (+MultiVariate Analysis? → improve ROC)

Thank You for the attention!

Backups

Supported by the ÚNKP-20-2 and ÚNKP-19-1 New National Excellence Program of the Ministry for Innovation and Technology from the source of the National Research,

Development and Innovation Fund. Further special thanks to NKFIH OTKA 128713 grant.

NATIONAL RESEARCH, DEVELOPMENT 1 / 51 AND INNOVATION OFFICE HUNGARY

14 TeV: neutron energy

 Huge discrepancy between predictions of background by different models

14 TeV: ROC for ZDC cut

- Total inelastic cross section increases with energy
- Ch.ex. cross section considered as constant
 → net decrease in purity

14 TeV: final ROC

- Same tendency between models
- Lower purity reflected

14 TeV: bias test I.

Same tendencies

14 TeV: bias test II.

Same tendencies

Charge exchange in the simulation

a) single pion exchange

b) its background (instead of pion another reggeon)

c-d) double dissociative background

e) double pion exchange

f) its background (dominance ~before)

g-h) central diffractive background

MonCher implemented into CRMC Own analysis on the output

Total inelastic pp&pp cross-sections

Possible charge exchanges

Process	Type of $\pi^+ p$ interactions	Picture of the process	Process	Type of $\pi^+\pi^+$ interactions	Picture of the process
$pp \rightarrow nX$	$\begin{array}{c} \text{minimum bias:} \\ \pi^+ p \to X \end{array}$	$n \xrightarrow{\pi_{+}} p \xrightarrow{\pi_{+}} \chi$	$pp \rightarrow nXn$	minimum bias: $\pi^+\pi^+ \to X$	$p \qquad n \\ \pi_+ \qquad \pi_+ \qquad X$
$pp \rightarrow n\pi^+ p$	elastic scattering: $\pi^+ p \to \pi^+ p$	p n n π $+$ π $+$ p p	$pp \rightarrow n\pi^+\pi^+ n$	elastic scattering: $\pi^+\pi^+ \to \pi^+\pi^+$	$\begin{array}{c} & & & \\ & & & \\ p & & & \\ & & & & \\ & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & &$
$pp \rightarrow nXY$	double diffraction: $\pi^+ p \to X + Y$	p n n r x p p	$pp \rightarrow nXYn$	double diffraction:	n p n n r
$pp \rightarrow nXp$	single diffraction (π^+ dissociation): $\pi^+ p \to X + p$	p n π X p π		$\pi^+\pi^+ \to X + Y$	Y n p
$pp \rightarrow n X \pi^+$	single diffraction (p dissociation): $\pi^+ p \to X + \pi^+$	p	$pp \rightarrow nX\pi^+n$	single diffraction: $\pi^+\pi^+ \to X + \pi^+$	p π_+ n χ π_+ p

Used models in CRMC

- EPOS 1.99: all 3 reggeons
 - Parton model (originally for RHIC)
 - Cross-sections tuned to measurements (KASCADE)
 - QM multiple scattering approach
 - Collective effects for dense systems (flow)
- EPOS-LHC: all 3 reggeons
 - Improvements from the previous one
 - Tuned to LHC data + EPOS 2 morals
 - Fast, but simplified hydrodynamics
- PYTHIA: only pions
 - Various possibilities for particle decay ("updated decay data")
 - Possibility for two selected hard interactions in same event
- SIBYLL 2.3c: pions & rhos
 - From CR model (most relevant aspects for the development of extensive air showers)
 - energy flow & particle production in the forward phase space region
 - Implementation of phenomenological model for charm particles formation
 10 / 51
 - New fits to total & elastic x-sections for pp, πp , Kp ints \rightarrow match LHC & fixed-target data

MonCher implemented into CRMC Own analysis on the output

Pseudorapidity distribution of (anti)neutrons

- Without charge exchange: until ZDC region (η >8.4) dies off η
- Charge exchange: in MC by definition always η>0 neutrons
- Ratios NOT in correspondance with cross-sections

Pseudorapidity distribution of (anti)neutrons

• Without charge exchange: until ZDC region (η >8.4) dies off

- Charge exchange: in MC by definition always η>0 neutrons
- Ratios NOT in correspondance with cross-sections

Other neutral hadrons

$\boldsymbol{\eta}$ distribution of π^{\pm} after $\boldsymbol{E}_{z D c}\mbox{-}cut$

EPOS 1.99 pp vs = 7 TeV, E_{zpc}>2140 GeV, p_T>0,1 GeV, charged pions

Same, comparing different models

- Two tunes of EPOS: similar shape of the η distribution ~expectations η
- PYTHIA & SIBYLL similar too
- signal/background ratio regarding different models: not consistent
 - \rightarrow in ch.ex. events distribution of pions not so model-dependent, 15/51

but non-ch.ex. background strongly model-dependent :(/main difference/

Energy resolution of the ZDC

Taking into account resolution of ZDC

Relative energy resolution $25\% \rightarrow Gaussian$:

standard deviation: 25% of the generator level energy

Selection only by ΔE_{HF}

Minimal energy in HF

.9 / 51

Deposited energy in different detectors

- Effect of asymmetry in ch.ex. versus without ch.ex. Events: energy-independent
- (E_{zDC} working point: Etot_{zDC}>2140 GeV)

 \mathbf{E}_{zDC} and $\Delta \mathbf{E}_{HF}$ EPOS 1.99 pp $\sqrt{s} = 7$ TeV <u>×10³</u> Count/Event/GeV 600 ch.ex. 500 400 300 200 100 0 -1500 -1000 -500 1000 500 0 Etot_{HF+-HF-} if Etot_{ZDC+} > 2140 GeV [GeV]

HF energy distribution for selected events

ch.ex. more asymmetric

Bias test I.

Bias test II./a

Weak dependence of working point Efficiency

Bias test II./b

• Weak dependence of working point

Forward rapidity gaps (FRGs)

eta "infinity"

See extra pdfs

η distribution ($E_{zDC} > 2000 \text{ GeV}$)

EPOS 1.99 pp \sqrt{s} = 7 TeV, without ch.ex.

Forward rapidity gap (FRG) -physical

EPOS 1.99 pp √s = 7 TeV

- FR: maximal pseudorapidity among particles which have $\eta < 8.4$
- Acceptance of ZDC: $\eta > 8.4$ \rightarrow FRG = 8.4 - FR

Forward rapidity gap -measurable

- FR: maximal pseudorapidity among particles which have $\eta < 5.2$
- 5.2<n<8.4: no detector (HF) \rightarrow FRG = 8.4 - FR
- Further: measurable FRG with $p_{\tau} > 0.5$ GeV

ROC curve of measurable FRG

EPOS 1.99 pp $\sqrt{s} = 7$ TeV

ROC curve of the FRG-cut, working point

EPOS 1.99 pp $\sqrt{s} = 7$ TeV

Forward rapidity gap energy-correlation

- Between the 2 type of event: in ZDC energy big difference
 - but rapidity gap similarly distributed
- Weak correlation

Further detectors of CMS: CASTOR

FRG with CASTOR

EPOS 1.99 pp $\sqrt{s} = 7$ TeV, CASTOR

ROC curve of FRG_{CASTOR}

EPOS 1.99 pp \sqrt{s} = 7 TeV, measurable FRG

FRG on proton's side

EPOS 1.99 pp √s = 7 TeV, proton-side

ROC curve of FRG_{proton side}

EPOS 1.99 pp \sqrt{s} = 7 TeV, measurable FRG

FRG for EM particles

EPOS 1.99 pp $\sqrt{s} = 7$ TeV, EM

ROC curve of FRG_{EM particles}

EPOS 1.99 pp \sqrt{s} = 7 TeV, measurable FRG

FRG for HAD particles

EPOS 1.99 pp $\sqrt{s} = 7$ TeV, EM

ROC curve for FRG_{HAD particles}

EPOS 1.99 pp \sqrt{s} = 7 TeV, measurable FRG

FRG: EM vs HAD

EPOS 1.99 pp $\sqrt{s} = 7$ TeV, measurable FRG

Leading energy particles

EPOS 1.99 pp $\sqrt{s} = 7$ TeV

Emax: EM vs HAD

EPOS 1.99 pp $\sqrt{s} = 7$ TeV EPOS 1.99 pp $\sqrt{s} = 7$ TeV 10 Count/Event/GeV 10 Without ch.ex., CASTOR Count/Event/GeV Without ch.ex., CASTOR Without ch.ex., HF Without ch.ex., HF 10⁻² 10⁻² ch.ex., CASTOR ch.ex., CASTOR ch.ex., HF ch.ex., HF 10⁻³ 10⁻³ 10-4 10^{-4} 10⁻⁵ 10⁻⁵ 10^{-6} 10^{-6} 10-7 10-7 10⁻⁸ 10^{-8} 500 1000 1500 2000 2500 0 200 400 600 800 1000 1200 1400 0 E_{max} of HAD particles [GeV] E_{max} of EM particles [GeV]

Total energy: HF vs CASTOR

EPOS 1.99 pp $\sqrt{s} = 7$ TeV

Etot: EM vs HAD

EPOS 1.99 pp $\sqrt{s} = 7$ TeV

EPOS 1.99 pp $\sqrt{s} = 7$ TeV

Pierre Auger Observatory

Water-Cherenkov

- Argentine, 18 countries
- Aim: origin + characteristic + interactions (>10¹⁷ eV)
- 1660 surface H₂O-Čerenkov detector (3000 km²)
- Surrounded with 32 telescopes (air fluoresce)

Detector system in PAO

- particles (EM & μ[±]): Čerenkov radiation, surface detectors
 - time + particle flux
- γs from collisions: fluorescent telescopes /UV/ (on dark nights)
 - time + dE/dX

Measurements in the PAO

- X_{max}: projected coordinate
 of the maximum of the shower
 to the longitudinal axis of the shower
- S₁₀₀₀: value of the signal from 1000 m trasversally of the shower axis

 \rightarrow energy of the shower: $E_0 = E_{cal} + E_{inv}$

•
$$E_{cal} = \int \mathrm{d}X \frac{\mathrm{d}E}{\mathrm{d}X}$$

•
$$\mathsf{E}_0 \propto \mathsf{S}_{1000}$$

- Not detectable component of energy (E_{inv}):
 - neutrinos

+heigh energy muons

1 pc (\approx 3,1 \cdot 10¹⁶ m) that distance, from where 1 AU **CR Mysteries** (Astronomical Unit; i.e. SunEarth distance ≈150 · 10⁶ km) can be seen in 1 arc second angle in case of transversal view

- OMG particle (Greisen-Zatsepin-Kuzmin limit: collision with background radiation → proton coming from afar than 50 Mpc: can have maximum \sim 8 J energy)
- Antiprotons have larger average energy than protons
- No antinuclei (AMS)
- Heavier elements at larger energies with higher probability
- Muonic component / shower not given back by simulations

Sources

- https://home.cern/science/physics/cosmic-rays-particles-outer-space?fbclid=IwAR3jJ1QjbM6gJg3IgIoIdmPMukRIqbXx-ROMJ_R_4eZbZyY4II4MLfhNmMU
- https://physicsopenlab.org/2016/01/10/cosmic-muons-decay/
- https://web.ikp.kit.edu/rulrich/crmc.html
- https://arxiv.org/abs/nucl-ex/0608052
- https://journals.aps.org/prd/abstract/10.1103/PhysRevD.91.032003
- https://arxiv.org/abs/2102.06640
- https://arxiv.org/abs/1101.0078v1
- https://arxiv.org/abs/1106.2076
- https://arxiv.org/abs/1205.3142v1
- https://doi.org/10.3390/universe5100210
- https://www.auger.org/
- https://www.youtube.com/watch?v=C3ue7cEocvI
- http://bodri.elte.hu/seminar/ulrich_20191030.pdf
- https://indico.cern.ch/event/196405/contributions/1476988/attachments/287868/402325/Colin_Baus_-_Importance_of_CASTOR.pdf
- https://doi.org/10.1016/j.nima.2015.06.058
- https://arxiv.org/abs/0905.1198
- https://arxiv.org/abs/1306.0121
- http://home.thep.lu.se/~torbjorn/pythia81html/Welcome.html
- https://arxiv.org/abs/1709.07227
- Wikipedia