

Róbert Vértesi for the ALICE collaboration

vertesi.robert@wigner.hu

Outline

Substructure of inclusive jets (pp collisions)

- Groomed jet substructures
- Generalized jet angularities

Flavor dependent substructure (pp collisions)

- D^0 -meson and Λ_c -baryon fragmentation
- Dead cone, R-profile
- Charmed-jet groomed substructure
- → Test of pQCD and hadronization models
- → Flavor-dependent production and fragmentation
- → Baseline for measurements in heavy-ion collisions

Heavy-ion collisions

- Groomed jet substructures
- Subjet fragmentation
- → Modification of jet fragmentation by the deconfined medium

Jet measurements with ALICE

Central Barrel: $|\eta| < 0.9$

Time Projection Chamber:

gas detector charged-particle tracking and identification

Inner Tracking System

silicon detectors charged-particle tracking, secondary vertex

Charged-particle jets

- Full azimuth coverage
- High spacial precision

Jet measurements with ALICE

Central Barrel: $|\eta| < 0.9$

Time Projection Chamber:

gas detector charged-particle tracking and identification

Inner Tracking System

silicon detectors charged-particle tracking, secondary vertex

Full jets

- Direct theory comparison
- Limited acceptance

Charged-particle jets

- Full azimuth coverage
- High spacial precision

ElectroMagnetic Calorimeter

Jet measurements with ALICE

Jet substructure in pp collisions

Substructure of inclusive jets (pp collisions)

- Groomed jet substructures
- Generalized jet angularities

Flavor dependent substructure (pp collisions)

- D^0 -meson and Λ_c -baryon fragmentation
- Dead cone, R-profile
- Charmed-jet groomed substructure
- → Test of pQCD and hadronization models
- → Flavor-dependent production and fragmentation
- → Baseline for measurements in heavy-ion collisions

Heavy-ion collisions

- Groomed jet substructures
- Subjet fragmentation
- → Modification of jet fragmentation by the deconfined medium

Groomed jet substructure

- Access to the hard parton structure of a jet
 - Mitigate influence from the underlying event, hadronization
 - Direct interface with QCD calculations
- Soft-drop grooming: Remove large-angle soft radiation
 - Recluster the jet with Cambridge-Aachen algorithm (angular ordered) and unwind the jet clusterization
 - Iteratively remove soft branches not fulfilling $z>z_{
 m cut} heta^eta$

$$z = \frac{p_{\mathrm{T},2}}{p_{\mathrm{T},1} + p_{\mathrm{T},2}}$$
$$\theta = \frac{\Delta R_{12}}{R}$$

Larkoski, Marzani, Soyez, Thaler, JHEP 1405 (2014) 146

Groomed jet substructure

- Access to the hard parton structure of a jet
 - Mitigate influence from the underlying event, hadronization
 - Direct interface with QCD calculations
- Soft-drop grooming: Remove large-angle soft radiation
 - Recluster the jet with Cambridge-Aachen algorithm (angular ordered) and unwind the jet clusterization
 - Iteratively remove soft branches not fulfilling $z>z_{
 m cut} heta^{eta}$
- Substructure variables

• Groomed momentum fraction
$$z_g = \frac{p_{T,sublead}}{p_{T,lead} + p_{T,sublead}}$$

• Groomed radius
$$\theta_g \equiv \frac{R_g}{R}$$

Number of soft drop splittings $n_{
m SD}$

pp: Soft Drop grooming - $z_{\rm g}$ and $\theta_{\rm g}$

Groomed momentum fraction, full jets

pp \sqrt{s} = 13 TeV, $30 < p_{T,jet} < 40~GeV/c$, $z_{cut} = 0.1$, $\beta = 0$ absolutely norm., no background sub.

Groomed radius, charged-particle jets

pp \sqrt{s} = 13 TeV, $40 < p_{T,jet} < 60 \text{ GeV}/c$, $z_{cut} = 0.1$, R = 0.4 absolutely normalized

- Larger radii: more influence from non-perturbative effects
- Smaller β grooms soft splittings away \rightarrow more collimated jets
- Trends reproduced relatively well by PYTHIA
- → test for pQCD predictions and constraints for non-perturbative effects

Generalized jet angularities

- Characterizes jet structure with transverse-momentum fraction and angular deflection of components
 - Weights associated to both, in a continuous manner

$$\lambda_{\alpha}^{\kappa} \equiv \sum_{i} z_{i}^{\kappa} \theta_{i}^{\alpha}$$

- Infrared and collinear safe for $\kappa=1, \alpha>0$
 - calculable from pQCD
 - Special cases: λ₁¹ Jet girth
 - λ_2^1 Jet thrust
- systematic variation of α
- comparison of non-groomed λ_{α} and groomed-jet $\lambda_{\alpha,g}$
 - ⇒ Provides constraints on models
 - ⇒ Explores interplay between perturbative and nonperturbative QCD regime

pp: Generalized jet angularities

- First comparison of jet angularities to NLL' calculations at different α values
 - Full range of measurement: $p_T^{\text{chjet}}/(\text{GeV}/c) \in [20, 100], R = 0.2, 0.4$
 - Unfolded in p_T^{chjet} and λ_{α} => direct comparison to theory
 - Large deviations in the non-perturbative large- α range
 - Better agreement in the perturbative, small- α range

pp: Generalized jet angularities - groomed

- First measurement of groomed-jet angularities soft drop algorithm
 - Full range of measurement: $p_T^{\text{chjet}}/(\text{GeV}/c) \in [20, 100], R = 0.2, 0.4$ Unfolded in p_T^{chjet} and $\lambda_{\alpha} =>$ direct comparison to theory
 - Extended perturbative regime with grooming
 - Good agreement with NNL' calculations

Fragmentation of heavy-flavor

- $m_q > \Lambda_{QCD} \Rightarrow$ perturbative production down to low jet p_T
- Heavy flavour conserved throughout the jet evolution
- Flavor-dependence of fragmentation:

1) Color-charge effect

- Light jets are mostly gluon-initiated,
 while heavy-flavor jets are quark-initiated
- Couplings are different: qqg C_F ~4/3 vs. ggg C_A ~3
- Results in different shapes, momentum distributions, multiplicities

2) Mass-related effects

- Heavy flavor fragments hard: A large fraction of momentum is taken by the heavy hadron
- Dead cone: Forward emissions from radiators with large mass are suppressed

pp: Charm fragmentation - D-jet z_{II}

- Parallel momentum fraction, pp $\sqrt{s} = 13 \text{ TeV}$
 - Characteristic to heavy-flavor fragmentation
- **D**⁰-meson fragmentation is softer at high p_T than at lower p_T
 - POWHEG+PYTHIA6 predicts a stronger change towards low p_T

pp: Charm fragmentation - Λ_c -jet vs. D-jet z_{II}

- Parallel momentum fraction, pp $\sqrt{s} = 13 \text{ TeV}$
 - Characteristic to heavy-flavor fragmentation

- $z_{\parallel}^{ ext{ch}} = rac{oldsymbol{p}^{ ext{jet ch}} \cdot oldsymbol{p}^{ ext{HF}}}{oldsymbol{p}^{ ext{jet ch}} \cdot oldsymbol{p}^{ ext{jet ch}}}$
- **D**⁰-meson fragmentation is softer at high p_T than at lower p_T
 - POWHEG+PYTHIA6 predicts a stronger change towards low p_T

- Λ_c fragmentation
 - PYTHIA8 with SoftQCD settings performs well with Λ_c
 - Comparison of baryon to meson fragmentation

pp: Charm fragmentation - Λ_c -jet vs. D-jet z_{II}

- Parallel momentum fraction, pp $\sqrt{s} = 13 \text{ TeV}$
 - Characteristic to heavy-flavor fragmentation
- **D**⁰-meson fragmentation is softer at high p_T than at lower p_T
 - POWHEG+PYTHIA6 predicts a stronger change towards low p_T

Eszter Frajna Thursday 18:34

- Λ_c fragmentation
 - PYTHIA8 with SoftQCD settings performs well with Λ_c
 - Comparison of baryon to meson fragmentation

pp: Charm fragmentation - Λ_c , D-jet r-shape

- Radial angular distance distribution of a hadron from the jet axis, pp \sqrt{s} =13 TeV
 - Sensitive to different hadronisation mechanisms
 - Complementary to fragmentation function
- Λ_c fragments closer to jet axis than D^o
 - Better described by Monash than enhanced colour reconnection

pp: Dead cone effect in ALICE

- D-tagged to inclusive ratios vs. $ln(1/\theta)$ at \sqrt{s} =13 TeV
- Significant suppression of low-angle splittings in D-tagged jet
 - ⇒ First direct measurement of the dead cone in hadronic collisions
- Effect decreases toward higher energy of the radiator ($\rightarrow \theta > m_q/E_q$)

pp: D-jet substructure - z_g , R_g , n_{SD}

ALICE-PUBLIC-2020-002

- **D**⁰-tagged charged-jet groomed substructure **pp** \sqrt{s} = 13 TeV, z_{cut} = 0.1, β = 0
- n_{SD} : charm jets typically have less hard splitting than light jets
- Consistent with harder heavy-flavor fragmentation (mass and color charge effects)

Jet substructure in Pb-Pb collisions

Substructure of inclusive jets (pp collisions)

- Groomed jet substructures
- Generalized jet angularities

Flavor dependent substructure (pp collisions)

- D^0 -meson and Λ_c -baryon fragmentation
- Dead cone, R-profile
- Charmed-jet groomed substructure
- → Test of pQCD and hadronization models
- → Flavor-dependent production and fragmentation
- → Baseline for measurements in heavy-ion collisions

Heavy-ion collisions

- Groomed jet substructures
- Subjet fragmentation
- → Modification of jet fragmentation by the deconfined medium

Pb-Pb: groomed jets - $z_{\mathbf{g}}$ and $\theta_{\mathbf{g}}$

arXiv:2107.12984

$$z_g = \frac{p_{\text{T,sublead}}}{p_{\text{T,lead}} + p_{\text{T,sublead}}}$$

Charged-particle jets, fully unfolded, Pb-Pb $\sqrt{s_{NN}}$ = 5 TeV z_{cut} = 0.2, R = 0.2 Combinatorial background suppressed using event-wise constituent subtraction

- z_g : no effect of interaction of the jet shower with medium
- $m{ heta}_{
 m g}$: suppression of large angles, enhancement of small angles => medium filters out wider subjets
- Models with incoherent energy loss as well as gluon filtering qualitatively describe data

Subjet fragmentation

- Recluster jets using anti-k_⊤ with a resolution parameter r < R</p>
- Characterize leading subjets with momentum fraction

$$z_r = \frac{p_{\mathrm{T}}^{\mathrm{ch,subjet}}}{p_{\mathrm{T}}^{\mathrm{ch,jet}}}$$

Subjet properties are sensitive to radiation patterns within a jet

- Subjet-fragmentation probes high-z fragmentation
 - ⇒ access a quark-dominated sample
- Measure sub-jet energy loss at the cross-section level

Pb-Pb: Subjet fragmentation

Subjet fragmentation z_r in Pb–Pb collisions at $\sqrt{s_{\rm NN}} = 5.02~{\rm TeV}$

- z_r ~ 1 is quark-dominated
- Hints of modification for r = 0.1 subjets
- Consistent with no modification for r = 0.2 subjets
- Consistent with model predictions

Summary

- pp collisions- test of pQCD evolution and hadronization
 - Grooming techniques separate hard pQCD processes from soft radiation
 - Generalized angularities directly test of pQCD calculations as well as nonperturbative shape functions
- Charmed jets a handle on fragmentation without reclustering
 - Direct access to fragmentation without grooming (z_{II}, R-shapes)
 - Means to explore flavor and mass-dependent fragmentation:
 First observation of the dead cone in hadronic collisions
- Pb-Pb collisions jet modification by the medium
 - Groomed substructure observables, subjet-fragmentation
 - Test different aspects of medium modification on jet evolution
 - Separation of soft and hard components

Summary

- pp collisions- test of pQCD evolution and hadronization
 - Grooming techniques separate hard pQCD processes from soft radiation
 - Generalized angularities directly test of pQCD calculations as well as nonperturbative shape functions
- Charmed jets a handle on fragmentation without reclustering
 - Direct access to fragmentation without grooming (z_{II}, R-shapes)
 - Means to explore flavor and mass-dependent fragmentation:
 First observation of the dead cone in hadronic collisions
- Pb-Pb collisions jet modification by the medium
 - Groomed substructure observables, subjet-fragmentation
 - Test different aspects of medium modification on jet evolution
 - Separation of soft and hard components

Just a fraction of ALICE substructure measurements - much more out there

High-precision Run3 data: beauty-jets, nuclear modification in details...

Jet suppression in Pb-Pb

wide jets, R=0.4

- Measurement down to $p_T = 40 \text{ GeV/}c => \text{ redistribution of energy}$
- Only weak dependence seen in data on jet resolution R
- Challenge to some models: stronger R dependence predicted than in data

Soft Drop grooming: z_g vs. jet R

- Full-jet groomed momentum fraction in pp collisions at $\sqrt{s} = 13 \text{ TeV}$ $z_{\text{cut}} = 0.1, \beta = 0$, absolutely normalized, no background subtraction
- At low p_T : small radii jets tend to split more symmetrically larger radii: higher sensitivity to non-perturbative effects
- Slight p_T-dependence for small radii
- Trends reproduced well by PYTHIA

Soft Drop grooming: z_g vs. β

- Charged-particle jet groomed momentum fraction in pp collisions at $\sqrt{s} = 13 \text{ TeV}$ $z_{\text{cut}} = 0.1, R = 0.4$, absolutely normalized
- A weak p_T -dependence is present
- Trends reproduced relatively well by PYTHIA

Soft Drop grooming: θ_{g} vs. β

- Charged-particle jet groomed radius in pp collisions at \sqrt{s} = 13 TeV $z_{\rm cut}$ = 0.1, R = 0.4, absolutely normalized
- Smaller β grooms soft splittings away \rightarrow more collimated jets
- Trends reproduced relatively well by PYTHIA
- → possibility to explore contributions from partonic and hadronic stages

Jet-medium interactions

- Low p_T: Azimuthal h-h correlations, per-trigger normalized
 - Broadening of central angular correlation peaks in the $\Delta \eta$ direction
 - Understanding: rescattering with radial flow (AMPT)
- **Higher** p_T : Azimuthal h-h correlations, $I_{AA} = Y_{AA}/Y_{pp}$
 - Narrowing of the peak in central events in the $\Delta \eta$ direction
 - Jet structure modifications? No proper understanding by models.

Jet Substructure in Pb-Pb

- First intra-jet splitting z_g
 - At small angles ($\Delta R < 0.1$): consistent z_g distributions in Pb-Pb and vacuum
 - At large angles ($\Delta R > 0.2$): z_g distributions are steeper in medium than in vacuum

$$z = \frac{min(p_{T,1}, p_{T,2})}{p_{T,1} + p_{T,2}}$$

Early jet development influenced by medium

Pb-Pb: groomed jets - z_{g}

- Charged-particle jet groomed momentum fraction Fully unfolded, Pb-Pb $\sqrt{s_{NN}}$ = 5 TeV z_{cut} = 0.2, R = 0.2
- Combinatorial background suppressed using event-wise constituent subtraction
- Consistent with no modification:
 interaction of the jet shower with medium does not affect z_a

Pb-Pb: groomed jets - $\theta_{\mathbf{g}}$

arXiv:2107.12984

- Charged-particle jet groomed radius Fully unfolded, Pb-Pb $\sqrt{s_{NN}}$ = 5 TeV z_{cut} = 0.2, R = 0.2
- Suppression of large angles and enhancement of small angles
 => medium filters out wider subjets
- Models with incoherent energy loss as well as gluon filtering qualitatively describe data

Pb-Pb: *N*-subjettiness

1st measurement of *N*-subjettiness in Pb–Pb collisions at $\sqrt{s_{\rm NN}}$ = 2.76 TeV

- Fully corrected τ_2/τ_I distributions (from recoil jets, unbiased towards lower $p_{T,chjet}$)
- Subjet axes determined using C/A-reclustering: slight deviation from PYTHIA8
- When C/A reclustering with soft-drop grooming applied:

No modification within current precision compared to PYTHIA

Baryon-to-meson ratio: Λ_c^+/D^0 , Ξ_c^0/D^0

- $\Xi_c^{0/}D^0$ as well as Λ_c^{+}/D^0 are underestimated by models based on ee collisions: Does charm hadronization depend on collision system?
 - PYTHIA8 with string formation beyond leading colour approximation?
 Christiansen, Skands, JHEP 1508 (2015) 003
 - Feed-down from augmented set of charm-baryon states?
 Chen-He, PLB 815 (2021) 136144
- Detailed measurements of charm baryons: input for theoretical understanding of HF fragmentation

Charm production: Do-jet cross sections

JHEP 1908 (2019) 133

Analysis technique

- Identify D⁰ mesons via hadronic decays
- Replace decay products with D⁰ in jet

Comparison with models

- NLO POWHEG+PYTHIA (hvq) calculations consistent with data (only marginally at low-p_T)
- Neither LO PYTHIA 6 and 8, nor NLO HERWIG 7 describe the cross-section

Charm fragmentation: D-jet z_{II} vs. p_T

pp
$$\sqrt{s}$$
=13 TeV

- parallel momentum fraction
 - Characteristic to heavy-flavor fragmentation

$$z_{\parallel}^{\text{ch}} = \frac{\boldsymbol{p}^{\text{jet ch}} \cdot \boldsymbol{p}^{\text{HF}}}{\boldsymbol{p}^{\text{jet ch}} \cdot \boldsymbol{p}^{\text{jet ch}}}$$

- D-meson fragmentation is softer at high p_T than at lower p_T
- POWHEG+PYTHIA6 predicts a stronger change towards low p_T

Dead cone: the Lund plane

- D⁰ as well as inclusive jets: Reclustering with C/A
 L. Cunqueiro, M. Ploskon, PRD 99, 074027
- Lund plane populated with all splittings of the radiator's prong
 - D₀: depletion expected at low angles (~higher ln(1/θ) values)
 Note: 10 to 15% feed-down contribution in D₀ from b

 k_T-cut to remove contamination from hadronization, decay and the underlying event

ALICE Upgrade for Run-3 and Run-4

Run 2: $\mathcal{L}_{Pb-Pb} = 1.0 \text{ nb}^{-1}$

Run 3: $\mathcal{L}_{Pb-Pb} = 6.0 \text{ nb}^{-1}$

Run 4: $\mathcal{L}_{Pb-Pb} = 7.0 \text{ nb}^{-1}$

- Up to 50 kHz Pb-Pb interaction rate
- Requested Pb-Pb luminosity: 13 nb⁻¹ (50-100x Run2 Pb-Pb)
- Improved tracking efficiency and resolution at low pT
- Detector upgrades: ITS, TPC, MFT, FIT

Faster, continuous readout

