HEAVY-FLAVOUR HADRON PRODUCTION AS A FUNCTION OF CHARGED-PARTICLE MULTIPLICITY MEASURED BY ALICE

Overview

- 1. Introduction
- 2. Physics motivation
- 3. Measurements in ALICE
- 4. Results
- 5. Summary

Heavy-Flavour (HF) Probes

Time evolution of pp collisions on the left vs A-A collisions on the right

Small systems (pp & p-A)

- Test pQCD theoryReference for AA
- Reference for AA collision

Nucleus-nucleus (AA)

Study QGP

 $fm/c = 3x10^{-24} second (s)$

HF in pp collisions

- Heavy quarks (charm and beauty) are produced in partonic scattering processes with large Q²
- The production cross section can be determined using perturbative QCD (pQCD) calculations.

HF production vs charged-particle multiplicity

- Two component approach:
 - 1. <u>Initial hard scattering process</u>
 - Relevant for heavy-flavour (HF) quark production
 - 2. <u>Underlying event (UE):</u>
 - Semi-hard Multiple Parton Interactions (MPI)
 - Soft hadronic processes
- ☐ Multiplicity-dependent measurements allow for study of interplay between soft and hard particle production mechanisms.
- Intriguing observation: multiplicity-dependent studies in small colliding systems show remarkable similarities with AA collisions Nature Physics volume 13, pages 535-539 (2017)

The ALICE Detector

10 000 t, 26 m long, 16 m high, and 16 m wide.

a. ITS SPD (Pixel)

c. ITS SSD (Strip)

d. V0 and T0

e. FMD

TOF - provides charged-particle PID

TPC - tracking of charged particles and particle identification

TO (-3.28 < η < -2.97 and 4.61 < η < 4.92) - luminosity

V0 (-3.8 < η < -1.7 and 2.8 < η < 5.1) - Trigger, luminosity and centrality

Multiplicity Selection

Multiplicity estimators used to define event classes:

 Midrapidity: number of reconstructed tracklets in the two innermost layers of the ITS (SPD - detectors)

 Forward-rapidity: percentiles of the total VO amplitude distribution, obtained by summing the signals of VOA and VOC detectors

HF measurement in ALICE

Hadronic Decay Channel

Open heavy flavour - $D^0(c\underline{u})$, $D^+(c\underline{d})$ and $D^*(c\underline{s})$

$D^0 ightarrow \pi^- K^+$	BR ≈ 3.93 %
$D^+ \rightarrow K^- \pi^+ \pi^+$	$BR \approx 9.46 \%$
$D^{*+} \to D^0 (\to K^- \pi^+) \pi^+$	$BR \approx 2.66 \%$
$D_s^+ o \Phi(o K^-K^+)\pi^+$	$BR \approx 2.27\%$

Semi-leptonic Decay Channel

Charm -> lepton + X
$$BR~10\%$$

Beauty -> lepton + X $BR~10\%$
Beauty -> charm -> lepton + X $BR~9\%$

Quarkonia –J/ ψ -> mu^+mu^-

HF muon production vs charged-particle HITCE multiplicity

- HF vs multiplicity at $\sqrt{s} = 8$ TeV at forward rapidity (Run 1 Data).
- EPOS is a parton model with many binary parton-parton interactions with each one creating a parton ladder.

Takes into account: 1) Initial state and; 2) includes hydrodynamic evolution (Phys. Rev. C 89, 064903 (2014).

Rapidity dependence of HF production vs charged-particle multiplicity

- Comparison of open charm measurements at mi-rapidity (JHEP 09 (2015) 148) and inclusive HF measurements at forward rapidity.
- The dashed line is y=x.
- Both HF decay muons reconstructed at forward rapidity and D-meson reconstructed at mid-rapidity show faster than linear increase vs multiplicity.

 With a larger enhancement at mid-rapidity.
- Steepness more pronounced at high multiplicity.

HF electron decay production vs charged-particle multiplicity

- HF electron decay production vs multiplicity at $\sqrt{s} = 13$ TeV at mid-rapidity
- Fair agreement between the theoretical model and data
- PYTHIA 8.2 (Monash 2013) generate events in high energy collisions between elementary particle physics that comprise of a set of physics models for the evolution of few-body hard-scattering processes to a complex multi-particle final state (arXiv:1404.5630).

HF electron decay production vs charged-particle multiplicity

- Comparison of measurements at midrapidity (HF electron decay) and forward rapidity (HF muon decay).
- Faster than linear trend observed
- For HF decay electrons different trend is observed, especially at low multiplicity as compared to HF decay muons

Inclusive J/w production vs charged-particle multiplicity

- Inclusive J/ ψ production vs multiplicity at midrapidity at 13 TeV (Phys. Lett. B 810 (2020) 135758)
- Faster than linear increase of J/ψ yield with charged-particle multiplicity.
- PYTHIA8 is used to compare with data (Eur.Phys.J.C 79 (2019), 36).

Summary

- Results of measurements in pp collisions at $\sqrt{s} = 7$, 8 and 13 TeV have been shown.
- A faster than linear increase is observed in J/ψ production, HF muon and electron decay production vs multiplicity.
- A faster increase is observed in midrapidity than forward rapidity -> possible "auto-correlation"
 effects due to the overlapping between pseudo-rapidity regions of HF measurements and
 multiplicity estimator
- Theoretical models including HF-production in MPI describe qualitatively the observed trends

Outlook

- HF muon production vs multiplicity at pp collisions in $\sqrt{s} = 5$ and 13 TeV (Run 2 Data).
- The new Muon Forward Tracker (MFT) detector will contribute to distinguish between c and b decay muons.
- High Luminosity (HL-LHC) during Run 3 will introduce more physics opportunities:
 - \Box Charmonia at low- p_T , probe of deconfinement
 - ☐ Particle production in high-multiplicity events

ACKNOWLEDGEMENTS

• The organizers of the school

THANK YOU

BACK UP SLIDES

Colliding systems at the LHC

pp collisions:

- Test pQCD theories Reference for p-Pb and Pb-Pb collision

p-Pb collisions:

To assess the role of Cold Nuclear Matter (CNM) effects

Pb-Pb collisions:

Study the QGP and its properties

Heavy-Ion collisions at LHC

Time evolution of Heavy ion collisions

Deconfined quarks and qluons

High density and temp. leads to formation of QGP Hadron formation through Fragmentation

Chemical freeze-out and Kinetic freeze-out

HF in pp collisions

- Heavy quarks (charm and beauty) are produced in partonic scattering processes with large Q²
- The production cross section can be determined using perturbative QCD (pQCD) calculations.

$$d\sigma_{AB\to C}^{hard} = \sum_{a,b} f_{a|A(x_a,Q^2)} \bigotimes f_{b|B(x_b,Q^2)} \bigotimes d\sigma_{ab\to C}^{hard}(x_a,x_b,q^2) \bigotimes D_{c\to C}(z,Q^2)$$

Parton Distribution Function (PDF)

Parton Hard scattering cross-section

Fragmentation function

J M Campbell et al 2006 Rep. Prog. Phys. 70 89

- NLO (next-to-leading order) model for calculating the single inclusive heavy quark production cross section.
- FONLL (Fixed Order + Next-to-Lead Log) allows one to calculate predictions for one-particle inclusive distributions of a heavy quark (charm and beauty)

https://www-conf.kekjp/past/DIS06/transparencies/VVG5/hfl-cacciari.pdf

Inclusive Single muon cross section

[Phys. Lett. B 708 (2012) 265]

Muon Spectrometer

- Magnetic field of 0.7 T
- Resolution ~100 MeV/c²
- p > 4 GeV/c.
- MSL: single muon low p_{τ} (\geq 0.5 GeV/c)
- MSH: single muon high p_{τ} (\geq 4.2 GeV/c)

To trigger muons of interest

Chambers

Heavy-flavour measurements in pp collisions

- The production cross section of HF decay electrons and muons (c,b→µ) in pp collisions at √s= 8 TeV, compared to the FONLL pQCD model calculations
- Data reproduced by theoretical calculations within uncertainty.
- Muons from charm decays dominate the low p_T region while those from beauty dominate the high p_T region