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Why is finite µB so difficult for the lattice?

Lattice QCD is a set of theoretical and computational techniques to

perform the Euclidean path integral:

Z =

∫
DAµDψ̄Dψe−

1
4

∫
FµνFµν−

∫
ψ̄(γµ∂µ+γ0µ+m)ψ

we integrate out the fermions analytically, to get

Z =

∫
DAµ detM(Aµ, µ,m)ψe−

1
4

∫
FµνFµν

where M is (a discretized version of) the Dirac-operator. We can

simulate this with Monte Carlo techniques if detM is real and positive:

� chemical potential µ = 0

� purely imaginary chemical potentials: Reµ = 0

� isospin chemical potential: µu = −µd

Otherwise: complex action problem

→ desperate times, desperate measures
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How to avoid the complex action problem?

Simple: simulate a different theory

Imaginary µ method
Simulate at µ2 ≤ 0 where the sign problem is absent to get 〈O〉µ2≤0,

then extrapolate to µ2 > 0.

Taylor method
Simulate at µ = 0 and calculate derivatives like:

∂n 〈O〉µ
∂µn

∣∣∣
µ=0

= 〈. . . 〉µ=0 + 〈. . . 〉µ=0 〈. . . 〉µ=0 + . . .

Reweighting
Simulate an other theory with Boltzmann-weights wsimulated[U] and

reconstruct expectation values in the target theory, with (maybe

complex) path integral weights wtarget[U]

〈O〉target =

〈
O

wtarget

wsimulated

〉
simulated〈

wtarget

wsimulated

〉
simulated
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Common problems of approaches to finite µ

Analytic continuation problem

� Common to the imaginary µ and Taylor methods

� The data used to construct the analytic continuation is different

Sign problem

� The complex action problem turn to a sign problem if one uses

reweighting: wtarget/wsimulated has fluctuating phases leading to large

cancellations.

� The Taylor method also has a remnant: signal to noise ratio gets

worse with higher derivatives.

Overlap problem

� Common to the reweighting and Taylor methods

� Insufficient sampling of the tails of the distribution of an observable:

always appears for high order cummulants; for heavy tailed

distirbutions can appear already for the average 4



The two uses of imaginary µ simulations
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� Numerical differentiation at µ = 0: safe

� Extrapolation: risky

� The hidden third use: understanding
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The crossover/transition line Tc(µ)

chiral condensate:
〈
ψ̄ψ

〉
= T

V
∂ ln Z
∂mud

ch. susceptibility: χ = T
V

∂2 ln Z
∂m2

ud

renormalize:
〈
ψ̄ψ

〉
R

= −
[〈
ψ̄ψ

〉
T
−

〈
ψ̄ψ

〉
0

]
mud
f 4
π

χR = [χT − χ0]
m2

ud
f 4
π

Tc(µB)

Tc(0)
= 1 − κ2

(
µB

Tc(µB)

)2

− κ4

(
µB

Tc(µB)

)4

− . . .

Numerical derivative

W-B: PRL 125 (2020) 5, 052001; 2002.02821

Extrapolation
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Looking for criticality with analytic continuation
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An observation from imaginary µB

Baryon susceptibilities: χB
n (T , µ̂B) = ∂n(p/T 4)

∂µ̂n
B

, where µ̂B = µB/T Baryon

density: χB
1 (T , µ̂B) = ∂(p/T 4)

∂µ̂B

Taylor: χB
1 (T , µ̂B) = µ̂Bχ

B
2 (T , 0) +

µ̂3
B

6 χ
B
4 (T , 0) + . . .

At imaginary µB we observe that χB
1 (T , µ̂B) is to good approx.:

χB
1 (T , µ̂B) ≈ µB χ

B
2

(
T
(
1 + κµ̂2

B

)
, 0
)
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The equation of state at finite (real) µB

� The previous observation can be turned into a systematically

improvable ansatz:

χB
1 (T , µB)

µB
= χB

2 (T ′, 0) T ′ = T (1 − κ2(T )µ̂2 − κ4(T )µ̂4 + . . . )

� Quite similar to the extrapolation of Tc(µB)

� Unlike with the equation of state from the O(µ6
B) Taylor expansions,

no pathological (non-monotonic) behavior is present for µB ≤ 2T
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Reweighting: in general

Target theory: Zt Simulated theory: Zs

Zt =

∫
DU wt(U) wt(U) = detM[U, µ)e−Sg [U] ∈ C

Zs =

∫
DU ws(U) ws(U) > 0

Zt

Zs
=

〈
wt

ws

〉

r

〈O〉t =

∫
DU wt(U)O(U)∫
DU wt(U)

=

∫
DU ws(U)wt(U)

ws (U)O(U)
∫
DU ws(U)wt(U)

ws (U)

=

〈
wt

ws
O
〉
s〈

wt

ws

〉
s

Two problems that are exponentially hard in the volume:

�
w
r ∈ C → the complex action problem became a sign problem

� Tails of ρ(w
r ) long → overlap problem
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Why does reweighting from µ = 0 fail?

The expectation value

of any observable:

〈O〉t =

〈
wt

ws
O
〉
s〈

wt

ws

〉
s

The weights are the
wt

ws
∝ det M(µ)

det M(0) . To

calculate anything, we

need to have control

over the observable

The sign problem is under control, the overlap problem is not:

Giordano, Kapas, Katz, Nogradi, Pasztor; PRD 102, 034503 (2020)
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Phase and sign reweighting

A simple way to avoid long tails for the distribution of w
r is to make sure

that w/r take values from a compact space.

Phase reweighting

wt = e−Sg detM = e−Sg | detM|e iθ
ws = e−Sg |detM| ⇒ w

r
= e iθ

Severity of the sign problem:
〈
e iθ
〉
PQ

Sign reweighting
A new choice of a theory to reweight to and from:

wt = e−SgRe detM

ws = e−Sg |Re detM| ⇒
wt

ws
= sgn cos θ = ±1

detM → Re detM can be done in Z but not in generic expectation

values. E.g. things like ∂n log Z
∂µn

ud
, ∂n log Z

∂mn
ud

and ∂n log Z
∂βn can be calculated.

Severity of the sign problem: 〈±〉SQ
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The severity of the sign problem

W-B: 2108.09213 [hep-lat]

� Statistics required ∝ 1/(strength of the sign problem)2

� Gaussian model describes simulation data pretty well

� Const. strength of the sign problem for const. (LT )3 (µB

T

)2
(roughly)

� For LT = 16/6 ≈ 2.7 (T = 140MeV → L ≈ 4fm) the sign problem

is managable for the entire RHIC BES range
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Temperature scan with sign reweighting

2108.09213 [hep-lat]

Similar rescalings in the imaginary µB direction:

W-B: PRL 126 (2021) 23, 232001;

W-B: PRL 125 (2020) 5, 052001;

Also works at real µB → no sign of a strengthening crossover
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Chemical potential scan with sign reweighting
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Summary

� The strength of the crossover is approx. const. at small µ

� Many observables (χB
1 /µB , 〈ψ〉R , χS

1 /µB) are collapsing sigmoids,

when plotted as a fn. of T (1 + κµ̂2), but κ is different for different

observables

� First noted in imaginary µ simulations but also confirmed by recent

restuls at real µ: a genuine feature of QCD at small µB

� The extrapolation of the crossover line and the equation of state can

be pushed farther in µB than the extrapolation of measures of the

strength of the transition

� The constant strength of the crossover makes it hard to look for

criticality with extrapolation methods

� More direct methods are becoming increasingly feasible

� So far give results consistent with extrapolation

� BUT: still lots of room for improvement
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Example without noise: a chiral effective model

Chiral limit of the Nf = 2 constituent quark-meson model in a leading

order large-N expansion. See: Jakovác et al., PLB 582, 179 (2004).

� The model exhibits a line of second order phase transitions for µ2 > 0,

which ends in a tricritical point.

� Both the transition line and the location of the tricritical point can be

determined analytically.
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� Alternating convergence of the

Padé approximants beyond the

radius of convergence of the

Taylor series.

� The tricritical point is not a

special point of the transition

line.
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How to estimate the severity of the sign problem

Simplification: Assume the phase of detM to be (a wrapped) Gaussian

Re

Im
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2(µ)/2 ≈ 1− σ2(µ)

2

Sign Quenched: 〈±〉SQ = 〈cos θ〉PQ
〈| cos θ|〉PQ ≈ 1− 4

π

(
2σ2(µ)
π

) 3
2

e
− π2

8σ2(µ)

Small µ: σ2(µ) = − 4
9
χud

11 (T )(LT )3µ̂2
B

Large µ: sign quenched needs a factor of (π/2)2 ≈ 2.5 less statistics
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