QCD thermodynamics at finite baryon density from lattice simulations - a mini review

Attila Pásztor
ELTE Eötvös Loránd University, Budapest
21st ZIMÁNYI SCHOOL WINTER WORKSHOP ON HEAVY ION PHYSICS, 2021

The conjectured phase diagram of QCD

Baryon density / chemical potential / doping

Why is finite μ_{B} so difficult for the lattice?

Lattice QCD is a set of theoretical and computational techniques to perform the Euclidean path integral:

$$
Z=\int \mathcal{D} A_{\mu} \mathcal{D} \bar{\psi} \mathcal{D} \psi e^{-\frac{1}{4} \int F_{\mu \nu} F_{\mu \nu}-\int \bar{\psi}\left(\gamma_{\mu} \partial_{\mu}+\gamma_{0} \mu+m\right) \psi}
$$

we integrate out the fermions analytically, to get

$$
Z=\int \mathcal{D} A_{\mu} \operatorname{det} M\left(A_{\mu}, \mu, m\right) \psi e^{-\frac{1}{4} \int F_{\mu \nu} F_{\mu \nu}}
$$

where M is (a discretized version of) the Dirac-operator. We can simulate this with Monte Carlo techniques if det M is real and positive:

- chemical potential $\mu=0$
- purely imaginary chemical potentials: $\operatorname{Re} \mu=0$
- isospin chemical potential: $\mu_{u}=-\mu_{d}$

Otherwise: complex action problem
\rightarrow desperate times, desperate measures

How to avoid the complex action problem?

Simple: simulate a different theory

Imaginary μ method

Simulate at $\mu^{2} \leq 0$ where the sign problem is absent to get $\langle O\rangle_{\mu^{2} \leq 0}$, then extrapolate to $\mu^{2}>0$.

Taylor method

Simulate at $\mu=0$ and calculate derivatives like:

$$
\left.\frac{\partial^{n}\langle O\rangle_{\mu}}{\partial \mu^{n}}\right|_{\mu=0}=\langle\ldots\rangle_{\mu=0}+\langle\ldots\rangle_{\mu=0}\langle\ldots\rangle_{\mu=0}+\ldots
$$

Reweighting

Simulate an other theory with Boltzmann-weights $w_{\text {simulated }}[U]$ and reconstruct expectation values in the target theory, with (maybe complex) path integral weights $w_{\text {target }}[U]$

$$
\langle O\rangle_{\text {target }}=\frac{\left\langle O \frac{w_{\text {target }}}{W_{\text {simulated }}}\right\rangle_{\text {simulated }}}{\left\langle\frac{w_{\text {target }}}{w_{\text {simulated }}}\right\rangle_{\text {simulated }}}
$$

Common problems of approaches to finite μ

Analytic continuation problem

- Common to the imaginary μ and Taylor methods
- The data used to construct the analytic continuation is different

Sign problem

- The complex action problem turn to a sign problem if one uses reweighting: $w_{\text {target }} / w_{\text {simulated }}$ has fluctuating phases leading to large cancellations.
- The Taylor method also has a remnant: signal to noise ratio gets worse with higher derivatives.

Overlap problem

- Common to the reweighting and Taylor methods
- Insufficient sampling of the tails of the distribution of an observable: always appears for high order cummulants; for heavy tailed distirbutions can appear already for the average

The two uses of imaginary μ simulations

Analytical continuation on $N_{t}=12$ raw data

- Numerical differentiation at $\mu=0$: safe
- Extrapolation: risky
- The hidden third use: understanding

The crossover/transition line $T_{c}(\mu)$

chiral condensate: $\langle\bar{\psi} \psi\rangle=\frac{T}{V} \frac{\partial \ln z}{\partial m_{u d}} \quad$ ch. susceptibility: $\chi=\frac{T}{V} \frac{\partial^{2} \ln z}{\partial m_{u d}^{2}}$ renormalize: $\langle\bar{\psi} \psi\rangle_{R}=-\left[\langle\bar{\psi} \psi\rangle_{T}-\langle\bar{\psi} \psi\rangle_{0}\right] \frac{m_{u d}}{f_{T}^{4}} \quad \chi_{R}=\left[\chi_{T}-\chi_{0}\right] \frac{m_{u d}^{2}}{f_{T}^{4}}$

$$
\frac{T_{c}\left(\mu_{B}\right)}{T_{c}(0)}=1-\kappa^{2}\left(\frac{\mu_{B}}{T_{c}\left(\mu_{B}\right)}\right)^{2}-\kappa^{4}\left(\frac{\mu_{B}}{T_{c}\left(\mu_{B}\right)}\right)^{4}-\ldots
$$

Numerical derivative

W-B: PRL 125 (2020) 5, 052001; 2002.02821

Extrapolation

Pasztor, Szep, Marko: PRD 103 (2021) 3, 034511; 2010.00394

Looking for criticality with analytic continuation

An observation from imaginary μ_{B}

Baryon susceptibilities: $\chi_{n}^{B}\left(T, \hat{\mu}_{B}\right)=\frac{\partial^{n}\left(p / T^{4}\right)}{\partial \hat{\mu}_{B}^{n}}$, where $\hat{\mu}_{B}=\mu_{B} / T$ Baryon density: $\chi_{1}^{B}\left(T, \hat{\mu}_{B}\right)=\frac{\partial\left(p / T^{4}\right)}{\partial \hat{\mu}_{B}}$
Taylor: $\chi_{1}^{B}\left(T, \hat{\mu}_{B}\right)=\hat{\mu}_{B} \chi_{2}^{B}(T, 0)+\frac{\hat{\mu}_{B}^{3}}{6} \chi_{4}^{B}(T, 0)+\ldots$
At imaginary μ_{B} we observe that $\chi_{1}^{B}\left(T, \hat{\mu}_{B}\right)$ is to good approx.:

$$
\chi_{1}^{B}\left(T, \hat{\mu}_{B}\right) \approx \mu_{B} \chi_{2}^{B}\left(T\left(1+\kappa \hat{\mu}_{B}^{2}\right), 0\right)
$$

W-B: Phys. Rev. Lett. 126, 232001 (2021); 2102.06660

The equation of state at finite (real) μ_{B}

- The previous observation can be turned into a systematically improvable ansatz:

$$
\frac{\chi_{1}^{B}\left(T, \mu_{B}\right)}{\mu_{B}}=\chi_{2}^{B}\left(T^{\prime}, 0\right) \quad T^{\prime}=T\left(1-\kappa_{2}(T) \hat{\mu}^{2}-\kappa_{4}(T) \hat{\mu}^{4}+\ldots\right)
$$

- Quite similar to the extrapolation of $T_{c}\left(\mu_{B}\right)$
- Unlike with the equation of state from the $\mathcal{O}\left(\mu_{B}^{6}\right)$ Taylor expansions, no pathological (non-monotonic) behavior is present for $\mu_{B} \leq 2 T$

W-B: Phys. Rev. Lett. 126, 232001 (2021); 2102.06660

Reweighting: in general

Target theory: Z_{t} Simulated theory: Z_{s}

$$
\begin{aligned}
Z_{t} & =\int \mathcal{D} U w_{t}(U) \quad w_{t}(U)=\operatorname{det} M[U, \mu) e^{-S_{g}[U]} \in \mathbb{C} \\
Z_{s} & =\int \mathcal{D} U w_{s}(U) \quad w_{s}(U)>0 \\
\frac{Z_{t}}{Z_{s}} & =\left\langle\frac{w_{t}}{w_{s}}\right\rangle_{r} \\
\langle O\rangle_{t} & =\frac{\int \mathcal{D} U w_{t}(U) O(U)}{\int \mathcal{D} U w_{t}(U)}=\frac{\int \mathcal{D} U w_{s}(U) \frac{w_{t}(U)}{w_{s}(U)} O(U)}{\int \mathcal{D} U w_{s}(U) \frac{w_{t}(U)}{w_{s}(U)}}=\frac{\left\langle\frac{w_{t}}{w_{s}} O\right\rangle_{s}}{\left\langle\frac{w_{t}}{w_{s}}\right\rangle_{s}}
\end{aligned}
$$

Two problems that are exponentially hard in the volume:

- $\frac{w}{r} \in \mathbb{C} \rightarrow$ the complex action problem became a sign problem
- Tails of $\rho\left(\frac{w}{r}\right)$ long \rightarrow overlap problem

Why does reweighting from $\mu=0$ fail?

The expectation value of any observable:

$$
\langle O\rangle_{t}=\frac{\left\langle\frac{w_{t}}{w_{s}} O\right\rangle_{s}}{\left\langle\frac{w_{t}}{w_{s}}\right\rangle_{s}}
$$

The weights are the $\frac{w_{t}}{w_{s}} \propto \frac{\operatorname{det} M(\mu)}{\operatorname{det} M(0)} . \quad$ To calculate anything, we need to have control over the observable

The sign problem is under control, the overlap problem is not: Giordano, Kapas, Katz, Nogradi, Pasztor; PRD 102, 034503 (2020)

Phase and sign reweighting

A simple way to avoid long tails for the distribution of $\frac{w}{r}$ is to make sure that w / r take values from a compact space.

Phase reweighting

$$
\begin{aligned}
& w_{t}=e^{-S_{g}} \operatorname{det} M=e^{-S_{g}}|\operatorname{det} M| e^{i \theta} \quad \Rightarrow \frac{w}{r}=e^{i \theta} \\
& w_{s}=e^{-S_{g}}|\operatorname{det} M|
\end{aligned}
$$

Severity of the sign problem: $\left\langle e^{i \theta}\right\rangle_{P Q}$

Sign reweighting

A new choice of a theory to reweight to and from:

$$
\begin{aligned}
& w_{t}=e^{-S_{g}} \operatorname{Redet} \mathrm{M} \\
& w_{s}=e^{-S_{g}}|\operatorname{Re} \operatorname{det} \mathrm{M}|
\end{aligned} \quad \Rightarrow \frac{w_{t}}{w_{s}}=\operatorname{sgn} \cos \theta= \pm 1
$$

$\operatorname{det} M \rightarrow \operatorname{Redet} M$ can be done in Z but not in generic expectation values. E.g. things like $\frac{\partial^{n} \log Z}{\partial \mu_{u d}^{n}}, \frac{\partial^{n} \log Z}{\partial m_{u d}^{u}}$ and $\frac{\partial^{n} \log Z}{\partial \beta^{n}}$ can be calculated.
Severity of the sign problem: $\langle \pm\rangle_{S Q}$

The severity of the sign problem

W-B: 2108.09213 [hep-lat]

- Statistics required $\propto 1 /\left(\right.$ strength of the sign problem) ${ }^{2}$
- Gaussian model describes simulation data pretty well
- Const. strength of the sign problem for const. $(L T)^{3}\left(\frac{\mu_{B}}{T}\right)^{2}$ (roughly)
- For $L T=16 / 6 \approx 2.7(T=140 \mathrm{MeV} \rightarrow L \approx 4 \mathrm{fm})$ the sign problem is managable for the entire RHIC BES range

Temperature scan with sign reweighting

Similar rescalings in the imaginary μ_{B} direction:

$$
\begin{aligned}
& \text { W-B: PRL } 126 \text { (2021) 23, 232001; } \\
& \text { W-B: PRL } 125 \text { (2020) 5, 052001; }
\end{aligned}
$$

Also works at real $\mu_{B} \rightarrow$ no sign of a strengthening crossover

Chemical potential scan with sign reweighting

2108.09213 [hep-lat]; $T=140 \mathrm{MeV}$ and $0 \leq \mu_{B} \leq 380 \mathrm{MeV}$ The direct method penetrates the region where errors from analytic continuation blow up!

Summary

- The strength of the crossover is approx. const. at small μ
- Many observables $\left(\chi_{1}^{B} / \mu_{B},\langle\psi\rangle_{R}, \chi_{1}^{S} / \mu_{B}\right)$ are collapsing sigmoids, when plotted as a fn . of $T\left(1+\kappa \hat{\mu}^{2}\right)$, but κ is different for different observables
- First noted in imaginary μ simulations but also confirmed by recent restuls at real μ : a genuine feature of QCD at small μ_{B}
- The extrapolation of the crossover line and the equation of state can be pushed farther in μ_{B} than the extrapolation of measures of the strength of the transition
- The constant strength of the crossover makes it hard to look for criticality with extrapolation methods
- More direct methods are becoming increasingly feasible
- So far give results consistent with extrapolation
- BUT: still lots of room for improvement

Example without noise: a chiral effective model

Chiral limit of the $N_{f}=2$ constituent quark-meson model in a leading order large-N expansion. See: Jakovác et al., PLB 582, 179 (2004).

- The model exhibits a line of second order phase transitions for $\mu^{2}>0$, which ends in a tricritical point.
- Both the transition line and the location of the tricritical point can be determined analytically.

- Alternating convergence of the Padé approximants beyond the radius of convergence of the Taylor series.
- The tricritical point is not a special point of the transition line.

How to estimate the severity of the sign problem

Simplification: Assume the phase of $\operatorname{det} M$ to be (a wrapped) Gaussian

Phase Quenched: $\langle\cos \theta\rangle_{P Q}=e^{-\sigma^{2}(\mu) / 2} \approx 1-\frac{\sigma^{2}(\mu)}{2}$
Sign Quenched: $\langle \pm\rangle_{S Q}=\frac{\langle\cos \theta\rangle_{P Q}}{\langle\mid \cos \theta\rangle_{P Q}} \approx 1-\frac{4}{\pi}\left(\frac{2 \sigma^{2}(\mu)}{\pi}\right)^{\frac{3}{2}} e^{-\frac{\pi^{2}}{8 \sigma^{2}(\mu)}}$
Small $\mu: \sigma^{2}(\mu)=-\frac{4}{9} \chi_{11}^{u d}(T)(L T)^{3} \hat{\mu}_{B}^{2}$
Large μ : sign quenched needs a factor of $(\pi / 2)^{2} \approx 2.5$ less statistics

