QCD thermodynamics at finite baryon density from lattice simulations - a mini review

Attila Pásztor ELTE Eötvös Loránd University, Budapest

21st ZIMÁNYI SCHOOL WINTER WORKSHOP ON HEAVY ION PHYSICS, 2021

The conjectured phase diagram of QCD

Baryon density / chemical potential / doping

Why is finite μ_B so difficult for the lattice?

Lattice QCD is a set of theoretical and computational techniques to perform the Euclidean path integral:

$$Z = \int \mathcal{D}A_{\mu}\mathcal{D}\bar{\psi}\mathcal{D}\psi e^{-\frac{1}{4}\int F_{\mu\nu}F_{\mu\nu}-\int \bar{\psi}(\gamma_{\mu}\partial_{\mu}+\gamma_{0}\mu+m)\psi}$$

we integrate out the fermions analytically, to get

$$Z = \int \mathcal{D}A_{\mu} \det M(A_{\mu}, \mu, m) \psi e^{-\frac{1}{4} \int F_{\mu\nu} F_{\mu\nu}}$$

where M is (a discretized version of) the Dirac-operator. We can simulate this with Monte Carlo techniques if det M is **real and positive**:

- chemical potential $\mu = 0$
- purely imaginary chemical potentials: $\operatorname{Re} \mu = 0$
- isospin chemical potential: $\mu_u = -\mu_d$

Otherwise: complex action problem

 \rightarrow desperate times, desperate measures

How to avoid the complex action problem?

Simple: simulate a different theory

Imaginary μ method

Simulate at $\mu^2 \leq 0$ where the sign problem is absent to get $\langle O \rangle_{\mu^2 \leq 0}$, then extrapolate to $\mu^2 > 0$.

Taylor method

Simulate at $\mu = 0$ and calculate derivatives like:

$$\frac{\partial^n \langle O \rangle_\mu}{\partial \mu^n} \Big|_{\mu=0} = \langle \dots \rangle_{\mu=0} + \langle \dots \rangle_{\mu=0} \langle \dots \rangle_{\mu=0} + \dots$$

Reweighting

Simulate an other theory with Boltzmann-weights $w_{\text{simulated}}[U]$ and reconstruct expectation values in the target theory, with (maybe complex) path integral weights $w_{\text{target}}[U]$

$$\left\langle O \right\rangle_{target} = \frac{\left\langle O \frac{w_{target}}{w_{simulated}} \right\rangle_{simulated}}{\left\langle \frac{w_{target}}{w_{simulated}} \right\rangle_{simulated}}$$

Analytic continuation problem

- Common to the imaginary μ and Taylor methods
- The data used to construct the analytic continuation is different

Sign problem

- The complex action problem turn to a sign problem if one uses reweighting: $w_{target}/w_{simulated}$ has fluctuating phases leading to large cancellations.
- The Taylor method also has a remnant: signal to noise ratio gets worse with higher derivatives.

Overlap problem

- Common to the reweighting and Taylor methods
- Insufficient sampling of the tails of the distribution of an observable: always appears for high order cummulants; for heavy tailed distirbutions can appear already for the average

The two uses of imaginary μ simulations

- Numerical differentiation at $\mu = 0$: safe
- Extrapolation: risky
- The hidden third use: understanding

The crossover/transition line $T_c(\mu)$

chiral condensate:
$$\langle \bar{\psi}\psi \rangle = \frac{T}{V} \frac{\partial \ln Z}{\partial m_{ud}}$$
 ch. susceptibility: $\chi = \frac{T}{V} \frac{\partial^2 \ln Z}{\partial m_{ud}^2}$
renormalize: $\langle \bar{\psi}\psi \rangle_R = -\left[\langle \bar{\psi}\psi \rangle_T - \langle \bar{\psi}\psi \rangle_0\right] \frac{m_{ud}}{t_\pi^4}$ $\chi_R = [\chi_T - \chi_0] \frac{m_{ud}^2}{t_\pi^4}$
 $\frac{T_c(\mu_B)}{T_c(0)} = 1 - \kappa^2 \left(\frac{\mu_B}{T_c(\mu_B)}\right)^2 - \kappa^4 \left(\frac{\mu_B}{T_c(\mu_B)}\right)^4 - \dots$

Numerical derivative

Extrapolation

Looking for criticality with analytic continuation

W-B: PRL 125 (2020) 5, 052001; 2002.02821 [hep-lat]

An observation from imaginary μ_B

Baryon susceptibilities: $\chi_n^B(T, \hat{\mu}_B) = \frac{\partial^n(p/T^4)}{\partial \hat{\mu}_B^n}$, where $\hat{\mu}_B = \mu_B/T$ Baryon density: $\chi_1^B(T, \hat{\mu}_B) = \frac{\partial(p/T^4)}{\partial \hat{\mu}_B}$ Taylor: $\chi_1^B(T, \hat{\mu}_B) = \hat{\mu}_B \chi_2^B(T, 0) + \frac{\hat{\mu}_B^3}{6} \chi_4^B(T, 0) + \dots$

At imaginary μ_B we observe that $\chi_1^B(T, \hat{\mu}_B)$ is to good approx.: $\chi_1^B(T, \hat{\mu}_B) \approx \mu_B \chi_2^B \left(T \left(1 + \kappa \hat{\mu}_B^2\right), 0\right)$

W-B: Phys. Rev. Lett. 126, 232001 (2021); 2102.06660

The equation of state at finite (real) μ_B

• The previous observation can be turned into a systematically improvable ansatz:

$$\frac{\chi_1^{\mathcal{B}}(T,\mu_B)}{\mu_B} = \chi_2^{\mathcal{B}}(T',0) \quad T' = T(1-\kappa_2(T)\hat{\mu}^2 - \kappa_4(T)\hat{\mu}^4 + \dots)$$

- Quite similar to the extrapolation of $T_c(\mu_B)$
- Unlike with the equation of state from the $\mathcal{O}(\mu_B^6)$ Taylor expansions, no pathological (non-monotonic) behavior is present for $\mu_B \leq 2T$

W-B: Phys. Rev. Lett. 126, 232001 (2021); 2102.06660

Reweighting: in general

Target theory:
$$Z_t$$
 Simulated theory: Z_s
 $Z_t = \int \mathcal{D}U \ w_t(U) \qquad w_t(U) = det \mathcal{M}[U, \mu) e^{-S_g[U]} \in \mathbb{C}$
 $Z_s = \int \mathcal{D}U \ w_s(U) \qquad w_s(U) > 0$
 $\frac{Z_t}{Z_s} = \left\langle \frac{w_t}{w_s} \right\rangle_r$
 $\langle O \rangle_t = \frac{\int \mathcal{D}U \ w_t(U) O(U)}{\int \mathcal{D}U \ w_t(U)} = \frac{\int \mathcal{D}U \ w_s(U) \frac{w_t(U)}{w_s(U)} O(U)}{\int \mathcal{D}U \ w_s(U) \frac{w_t(U)}{w_s(U)}} = \frac{\left\langle \frac{w_t}{w_s} O \right\rangle_s}{\left\langle \frac{w_t}{w_s} \right\rangle_s}$

Two problems that are exponentially hard in the volume:

- $\frac{w}{r} \in \mathbb{C} \to$ the complex action problem became a sign problem
- Tails of $\rho(\frac{w}{r})$ long \rightarrow **overlap problem**

Why does reweighting from $\mu = 0$ fail?

The sign problem is under control, the overlap problem is not: Giordano, Kapas, Katz, Nogradi, Pasztor; PRD 102, 034503 (2020) A simple way to avoid long tails for the distribution of $\frac{w}{r}$ is to make sure that w/r take values from a compact space.

Phase reweighting

$$\begin{array}{ll} w_t = e^{-S_g} \det M = e^{-S_g} |\det M| e^{i\theta} \\ w_s = e^{-S_g} |\det M| \end{array} \Rightarrow \ \frac{w}{r} = e^{i\theta} \end{array}$$

Severity of the sign problem: $\langle e^{i\theta} \rangle_{PQ}$

Sign reweighting

A new choice of a theory to reweight to and from:

$$\begin{array}{l} w_t = e^{-S_g} \operatorname{Re} \det \mathbf{M} \\ w_s = e^{-S_g} \left| \operatorname{Re} \det \mathbf{M} \right| \quad \Rightarrow \quad \frac{w_t}{w_s} = \operatorname{sgn} \cos \theta = \pm 1 \end{array}$$

det $M \to \text{Re} \det M$ can be done in Z but not in generic expectation values. E.g. things like $\frac{\partial^n \log Z}{\partial \mu_{ud}^n}$, $\frac{\partial^n \log Z}{\partial m_{ud}^n}$ and $\frac{\partial^n \log Z}{\partial \beta^n}$ can be calculated. Severity of the sign problem: $\langle \pm \rangle_{SQ}$

The severity of the sign problem

W-B: 2108.09213 [hep-lat]

- Statistics required $\propto 1/(\text{strength of the sign problem})^2$
- · Gaussian model describes simulation data pretty well
- Const. strength of the sign problem for const. $(LT)^3 \left(\frac{\mu_B}{T}\right)^2$ (roughly)
- For $LT = 16/6 \approx 2.7$ ($T = 140 \text{MeV} \rightarrow L \approx 4 \text{fm}$) the sign problem is managable for the entire RHIC BES range

Temperature scan with sign reweighting

Similar rescalings in the imaginary μ_B direction: W-B: PRL 126 (2021) 23, 232001; W-B: PRL 125 (2020) 5, 052001;

Also works at real $\mu_B
ightarrow$ no sign of a strengthening crossover

Chemical potential scan with sign reweighting

2108.09213 [hep-lat]; T = 140 MeV and $0 \le \mu_B \le 380$ MeV The direct method penetrates the region where errors from analytic continuation blow up!

Summary

- The strength of the crossover is approx. const. at small μ
- Many observables $(\chi_1^B/\mu_B, \langle \psi \rangle_R, \chi_1^S/\mu_B)$ are collapsing sigmoids, when plotted as a fn. of $T(1 + \kappa \hat{\mu}^2)$, but κ is different for different observables
- First noted in imaginary μ simulations but also confirmed by recent restuls at real μ : a genuine feature of QCD at small μ_B
- The extrapolation of the crossover line and the equation of state can be pushed farther in μ_B than the extrapolation of measures of the strength of the transition
- The constant strength of the crossover makes it hard to look for criticality with extrapolation methods
- More direct methods are becoming increasingly feasible
- So far give results consistent with extrapolation
- BUT: still lots of room for improvement

Example without noise: a chiral effective model

Chiral limit of the $N_f = 2$ constituent quark-meson model in a leading order large-N expansion. See: Jakovác et al., PLB **582**, 179 (2004).

- The model exhibits a line of second order phase transitions for μ² > 0, which ends in a tricritical point.
- Both the transition line and the location of the tricritical point can be determined **analytically**.

- Alternating convergence of the Padé approximants beyond the radius of convergence of the Taylor series.
- The tricritical point is **not** a special point of the transition line.

How to estimate the severity of the sign problem

Simplification: Assume the phase of det M to be (a wrapped) Gaussian

Phase Quenched: $\langle \cos \theta \rangle_{PQ} = e^{-\sigma^2(\mu)/2} \approx 1 - \frac{\sigma^2(\mu)}{2}$

Sign Quenched:
$$\langle \pm \rangle_{SQ} = \frac{\langle \cos \theta \rangle_{PQ}}{\langle |\cos \theta| \rangle_{PQ}} \approx 1 - \frac{4}{\pi} \left(\frac{2\sigma^2(\mu)}{\pi} \right)^{\frac{3}{2}} e^{-\frac{\pi^2}{8\sigma^2(\mu)}}$$

Small μ : $\sigma^2(\mu) = -\frac{4}{9}\chi_{11}^{ud}(T)(LT)^3\hat{\mu}_B^2$

Large μ : sign quenched needs a factor of $(\pi/2)^2 \approx 2.5$ less statistics