Corrections to the hadron resonance gas from lattice QCD and their effect on fluctuation-ratios at finite density

Dávid Pesznyák

in collaboration with

R. Bellwied, Sz. Borsányi, Z. Fodor, J. N. Guenther, S. D. Katz, P. Parotto, A. Pásztor, C. Ratti and K. K. Szabó

Wuppertal-Budapest Collaboration

Phys. Rev. D 104 (2021) no.9, 094508, arXiv:2102.06625 [hep-lat]

21st ZIMÁNYI SCHOOL WINTER WORKSHOP ON HEAVY ION PHYSICS December 6-10, 2021, Budapest, Hungary

The Hadron Resonance Gas (HRG) model

Importance:

- ▶ parameters of chemical freeze-out in experiments,
- non-critical baseline.

HRG: interacting gas of hadrons \cong non-interacting gas of hadrons and resonances.

$$\frac{p}{T^4} = \frac{1}{T^4} \sum_{\mathbf{h}} p_{\mathbf{h}} = \frac{1}{VT^3} \sum_{\mathbf{h}} \log \mathcal{Z}_{\mathbf{h}} \big(T, \pmb{\mu} = (\mu_B, \mu_Q, \mu_S) \big)$$

with

$$\begin{split} \log \mathcal{Z}_{\rm h} &= \mp \frac{d_{\rm h}}{2\pi^2} \frac{V}{T^3} \int\limits_0^\infty {\rm d}p \; p^2 \log \left[1 \mp z_{\rm h} \exp \left(-\frac{\sqrt{m_{\rm h}^2 + p^2}}{T} \right) \right] \\ &= V T m_{\rm h}^2 \frac{d_{\rm h}}{2\pi^2} \sum_{n=1}^\infty \frac{(\pm 1)^{n+1}}{n^2} z_{\rm h}^n K_2 \left(\frac{n m_{\rm h}}{T} \right) \end{split}$$

and fugacity factors: $z_h = \exp[\beta(B_h\mu_B + Q_h\mu_Q + S_h\mu_S)].$

Discrepancies of HRG and the lattice

Mostly good match for $\mu = (0, 0, 0)$ in the hadronic phase:

[WB: 1805.04445] [Pisa: 1611.08285] [HotQCD: 2001.08530]

Possible reasons for the deviation:

- incomplete resonance list,
- finite widths are missing,
- lack of non-resonant and repulsive interactions,
- restoration of chiral symmetry.

Generalised susceptibilities:

$$\chi^{BQS}_{lmn} = \frac{\partial^{l+m+n}(p/T^4)}{\partial \hat{\mu}^l_B \partial \hat{\mu}^m_Q \partial \hat{\mu}^n_S}$$

with $\hat{\mu}_i = \mu_i/T$.

Fugacity expansion of the QCD free energy

Fugacity expansion:

$$\frac{p(T, \hat{\mu}_B, \hat{\mu}_S)}{T^4} = \sum_{j,k} P_{jk}^{BS}(T) \cosh(j\hat{\mu}_B - k\hat{\mu}_S)$$

with $\mu_Q = 0$.

Sector coefficients: P_{ik}^{BS} ,

- \triangleright contributions from Hilbert subspaces with fixed B = j, S = k;
- e.g. (at $\mu = 0$)

$$\chi_4^B = \sum_k P_{1k}^{BS} + \sum_k 32 P_{2k}^{BS} + \sum_k 81 P_{3k}^{BS} + \dots$$

(B,S) $ $ $($	$(0,0) \mid (1,0)$	(0,1)	(1,1)	(1,2)	(2,0)	(0,2)	(2,1)
hadrons $ \pi$	$,\eta, ho \mid p,\Delta$	K	Λ, Σ	Ξ	p-p	K-K	$p-\Lambda, p-p-K$

- \blacktriangleright (main) contributions to ideal-HRG from $P_{00}^{BS}, P_{01}^{BS}, P_{10}^{BS}, P_{11}^{BS}, P_{12}^{BS}$ and $P_{13}^{BS},$
- ▶ for $B \ge 2$ coefficients are close to zero \sim deviation!

Lattice setup

- ▶ $N_{\rm f} = 2 + 1$; 4stout-improved staggered action. [WB: 1507.04627]
- $\mu = i\mu^{\mathcal{I}} \sim \cosh(ix) = \cos(x) \sim \text{Fourier series}.$
- ▶ $N_{\tau} = 8, 10, 12; LT \approx 3; T = 145 \text{ MeV}, 150 \text{ MeV}, 155 \text{ MeV}$ and 160 MeV.

$$\mathrm{Im}\chi_{10}^{BS} = \sum_{j,k} j P_{jk}^{BS}(T) \sin(j\hat{\mu}_B^{\mathcal{I}} - k\hat{\mu}_S^{\mathcal{I}}) \qquad \quad \mathrm{Im}\chi_{01}^{BS} = \sum_{j,k} (-k) P_{jk}^{BS}(T) \sin(j\hat{\mu}_B^{\mathcal{I}} - k\hat{\mu}_S^{\mathcal{I}})$$

Example: T = 155 MeV.

Sectors

$$N_{\tau} = 12$$
:

- $\qquad \qquad \text{Hierarchy: } P_{01}^{BS} > P_{02}^{BS} > P_{03}^{BS}; \, P_{10}^{BS} > P_{20}^{BS} > P_{30}^{BS}; \, P_{10}^{BS} > P_{12}^{BS} > P_{13}^{BS}; \, \text{etc.}$
- ▶ B = 2 sector: $P_{2k}^{BS} < 0$, and heavily underestimated in ideal HRG.

Systematic errors $\sim B_{\text{max}} = 2 \text{ or } 3.$

Subleading sectors – examples

P_{21}^{BS}

- more negative for higher T,
- ▶ e.g. N- Λ or N- Σ interactions,
- ▶ ideal HRG deviates,
- repulsive mean field HRG,
- excluded volume HRG. [1708.02852]

P_{1-1}^{BS}

- ▶ e.g. N-K⁺ scattering,
- ► S-matrix formalism applicable. [1806.02177]

Fluctuation ratios at finite density

Extrapolation to finite μ_B using truncated

$$\frac{p}{T^4} = \sum_{j,k} P_{jk}^{BS}(T) \cosh \left[j \hat{\mu}_B - k \hat{\mu}_S(\hat{\mu}_B) \right]$$

with strangeness neutrality:

$$\chi_1^S = \sum_{j,k} (-k) P_{jk}^{BS}(T) \sinh(j\hat{\mu}_B - k\hat{\mu}_S) \stackrel{!}{=} 0.$$

Ratios:

- $\chi_1^B/\chi_2^B \sim \text{proxy for } \mu_B$,
- $ightharpoonup \chi_3^B/\chi_1^B,\,\chi_4^B/\chi_2^B\sim {
 m baryon~thermometer},$
- $\triangleright \chi_{11}^{BS}/\chi_2^S \sim \text{strangeness thermometer}$

and

experimental proxy: $\sigma_{\Lambda}^2/(\sigma_{\Lambda}^2+\sigma_K^2)$. [WB: 1910.14592]

Crossover line: $T_{\rm c}(\mu_B) \approx T_{\rm c}^0(1 - \kappa_2 \hat{\mu}_B^2)$ [WB: 2002.02821]

Comparison with experiment

- Consistent with: [HotQCD: 2001.08530], [WB: 1805.0444].
- ▶ Using C_i net-proton cumulants from STAR Experiment.
- ▶ Assuming that the crossover and chemical freeze-out lines are close to each other.
- Ignoring ceaveats of comparison.

Summary and conclusion

- ▶ Scanning of the QCD free energy in imaginary μ_B - μ_S plane \sim separation of sectors.
- ▶ Possible separation of processes like *K-K* or *p-p* scattering.
- ightharpoonup Continuum estimates for P_{ik}^{BS} sector coefficients and fluctuation ratios.
- \triangleright Consistency with STAR data for small μ_B .
- ▶ Deviation of χ_4^B/χ_2^B from ideal HRG is due to B=2 effects.
- Our lattice results could provide help in
 - 1. phenomenology,
 - construction of more realistic models.

Thank you for your attention.

Supported by the ÚNKP-21-2 New National Excellence Program of the Ministry for Innovation and Technology from the source of the National Research, Development and Innovation Fund