Corrections to the hadron resonance gas from lattice QCD and their effect on fluctuation-ratios at finite density

Dávid Pesznyák

in collaboration with
R. Bellwied, Sz. Borsányi, Z. Fodor, J. N. Guenther, S. D. Katz, P. Parotto, A. Pásztor, C. Ratti and K. K. Szabó

Wuppertal-Budapest Collaboration

Phys. Rev. D 104 (2021) no.9, 094508, arXiv:2102.06625 [hep-lat]

December 6-10, 2021, Budapest, Hungary

The Hadron Resonance Gas (HRG) model

Importance:

- parameters of chemical freeze-out in experiments,
- non-critical baseline.

HRG: interacting gas of hadrons \cong non-interacting gas of hadrons and resonances.

$$
\frac{p}{T^{4}}=\frac{1}{T^{4}} \sum_{\mathrm{h}} p_{\mathrm{h}}=\frac{1}{V T^{3}} \sum_{\mathrm{h}} \log \mathcal{Z}_{\mathrm{h}}\left(T, \boldsymbol{\mu}=\left(\mu_{B}, \mu_{Q}, \mu_{S}\right)\right)
$$

with

$$
\begin{aligned}
\log \mathcal{Z}_{\mathrm{h}} & =\mp \frac{d_{\mathrm{h}}}{2 \pi^{2}} \frac{V}{T^{3}} \int_{0}^{\infty} \mathrm{d} p p^{2} \log \left[1 \mp z_{\mathrm{h}} \exp \left(-\frac{\sqrt{m_{\mathrm{h}}^{2}+p^{2}}}{T}\right)\right] \\
& =V T m_{\mathrm{h}}^{2} \frac{d_{\mathrm{h}}}{2 \pi^{2}} \sum_{n=1}^{\infty} \frac{(\pm 1)^{n+1}}{n^{2}} z_{\mathrm{h}}^{n} K_{2}\left(\frac{n m_{\mathrm{h}}}{T}\right)
\end{aligned}
$$

and fugacity factors: $z_{\mathrm{h}}=\exp \left[\beta\left(B_{\mathrm{h}} \mu_{B}+Q_{\mathrm{h}} \mu_{Q}+S_{\mathrm{h}} \mu_{S}\right)\right]$.

Discrepancies of HRG and the lattice

Mostly good match for $\boldsymbol{\mu}=(0,0,0)$ in the hadronic phase:

[WB: 1805.04445]
[Pisa: 1611.08285]
[HotQCD: 2001.08530]

Generalised susceptibilities:

Possible reasons for the deviation:

- incomplete resonance list,
- finite widths are missing,

$$
\chi_{l m n}^{B Q S}=\frac{\partial^{l+m+n}\left(p / T^{4}\right)}{\partial \hat{\mu}_{B}^{l} \partial \hat{\mu}_{Q}^{m} \partial \hat{\mu}_{S}^{n}},
$$

- lack of non-resonant and repulsive with $\hat{\mu}_{i}=\mu_{i} / T$. interactions,
- restoration of chiral symmetry.

Fugacity expansion of the QCD free energy

Fugacity expansion:

$$
\frac{p\left(T, \hat{\mu}_{B}, \hat{\mu}_{S}\right)}{T^{4}}=\sum_{j, k} P_{j k}^{B S}(T) \cosh \left(j \hat{\mu}_{B}-k \hat{\mu}_{S}\right)
$$

with $\mu_{Q}=0$.

Sector coefficients: $P_{j k}^{B S}$,

- contributions from Hilbert subspaces with fixed $B=j, S=k$;
- e.g. (at $\boldsymbol{\mu}=0$)

$$
\chi_{4}^{B}=\sum_{k} P_{1 k}^{B S}+\sum_{k} 32 P_{2 k}^{B S}+\sum_{k} 81 P_{3 k}^{B S}+\ldots
$$

(B, S)	$(0,0)$	$(1,0)$	$(0,1)$	$(1,1)$	$(1,2)$	$(2,0)$	$(0,2)$	$(2,1)$
hadrons	π, η, ρ	p, Δ	K	Λ, Σ	Ξ	$p-p$	$K-K$	$p-\Lambda, p-p-K$

- (main) contributions to ideal-HRG from $P_{00}^{B S}, P_{01}^{B S}, P_{10}^{B S}, P_{11}^{B S}, P_{12}^{B S}$ and $P_{13}^{B S}$,
- for $B \geq 2$ coefficients are close to zero \sim deviation!

Lattice setup

- $N_{\mathrm{f}}=2+1$; 4stout-improved staggered action. [wB: 1507.04627]
- $\boldsymbol{\mu}=i \boldsymbol{\mu}^{\mathcal{I}} \sim \cosh (i x)=\cos (x) \sim$ Fourier series.
- $N_{\tau}=8,10,12 ; L T \approx 3 ; T=145 \mathrm{MeV}, 150 \mathrm{MeV}, 155 \mathrm{MeV}$ and 160 MeV .
$\operatorname{Im} \chi_{10}^{B S}=\sum_{j, k} j P_{j k}^{B S}(T) \sin \left(j \hat{\mu}_{B}^{\mathcal{I}}-k \hat{\mu}_{S}^{\mathcal{I}}\right)$

$$
\operatorname{Im} \chi_{01}^{B S}=\sum_{j, k}(-k) P_{j k}^{B S}(T) \sin \left(j \hat{\mu}_{B}^{\mathcal{I}}-k \hat{\mu}_{S}^{\mathcal{I}}\right)
$$

Example: $T=155 \mathrm{MeV}$.

Sectors

$$
N_{\tau}=12
$$

- Hierarchy: $P_{01}^{B S}>P_{02}^{B S}>P_{03}^{B S} ; P_{10}^{B S}>P_{20}^{B S}>P_{30}^{B S} ; P_{10}^{B S}>P_{12}^{B S}>P_{13}^{B S}$; etc.
- $B=2$ sector: $P_{2 k}^{B S}<0$, and heavily underestimated in ideal HRG.

Systematic errors $\sim B_{\max }=2$ or 3 .

Subleading sectors - examples

$P_{21}^{B S}$

- more negative for higher T,
- e.g. $N-\Lambda$ or $N-\Sigma$ interactions,
- ideal HRG deviates,
- repulsive mean field HRG, [1708.00879]
- excluded volume HRG. [1708.02852]

$P_{1-1}^{B S}$
- e.g. $N-K^{+}$scattering,
- S-matrix formalism applicable. [1806.02177]

Fluctuation ratios at finite density

Extrapolation to finite μ_{B} using truncated

$$
\frac{p}{T^{4}}=\sum_{j, k} P_{j k}^{B S}(T) \cosh \left[j \hat{\mu}_{B}-k \hat{\mu}_{S}\left(\hat{\mu}_{B}\right)\right]
$$

with strangeness neutrality:
$\chi_{1}^{S}=\sum_{j, k}(-k) P_{j k}^{B S}(T) \sinh \left(j \hat{\mu}_{B}-k \hat{\mu}_{S}\right) \stackrel{!}{=} 0$.

Ratios:

- $\chi_{1}^{B} / \chi_{2}^{B} \sim$ proxy for μ_{B},
- $\chi_{3}^{B} / \chi_{1}^{B}, \chi_{4}^{B} / \chi_{2}^{B} \sim$ baryon thermometer,
- $\chi_{11}^{B S} / \chi_{2}^{S} \sim$ strangeness thermometer
and
experimental proxy: $\sigma_{\Lambda}^{2} /\left(\sigma_{\Lambda}^{2}+\sigma_{K}^{2}\right)$.
[WB: 1910.14592]

Crossover line: $T_{\mathrm{c}}\left(\mu_{B}\right) \approx T_{\mathrm{c}}^{0}\left(1-\kappa_{2} \hat{\mu}_{B}^{2}\right)$ [WB: 2002.02821]

Comparison with experiment

\rightarrow Consistent with: [HotQCD: 2001.08530], [WB: 1805.0444].

- Using C_{i} net-proton cumulants from STAR Experiment.
\rightarrow Assuming that the crossover and chemical freeze-out lines are close to each other.
- Ignoring ceaveats of comparison.

Summary and conclusion

- Scanning of the QCD free energy in imaginary $\mu_{B}-\mu_{S}$ plane \sim separation of sectors.
- Possible separation of processes like $K-K$ or $p-p$ scattering.
- Continuum estimates for $P_{j k}^{B S}$ sector coefficients and fluctuation ratios.
- Consistency with STAR data for small μ_{B}.
- Deviation of $\chi_{4}^{B} / \chi_{2}^{B}$ from ideal HRG is due to $B=2$ effects.
- Our lattice results could provide help in

1. phenomenology,
2. construction of more realistic models.

Thank you for your attention.

Supported by the ÚNKP-21-2 New National Excellence Program of the Ministry for Innovation and Technology from the source of the National Research, Development and Innovation Fund

