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“Machine learning is the field of study that gives computers 

the ability to learn without being explicitly programmed.”


-Arthur Samuel, 1959
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Introduction What it needs? 
• Big data

• Smart algorithm (BDT, DNN, GAN etc.)

• Knowledge from data

• Tune the parameters (Optimise the model)

• Predict!!
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the ability to learn without being explicitly programmed.”
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Supervised/unsupervised 
• Classification

• Regression

• Clustering

• Reinforcement learning etc.
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Impact parameter ( )b



 Zimányi Winter School 2021 | Neelkamal Mallick21st 4

Impact parameter ( )b

0 ≤ b ≤ 2R

• Transverse distance between the centres of 
colliding nuclei


• Initial geometry affects the final state particle 
production


• Order of a few fermi ( m)

• Impossible to estimate from experiments

• Could be inferred from charged particle 

multiplicity distribution

10−15
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Transverse Spherocity ( )S0
• Transverse Spherocity distinguishes hard and soft 

processes
• In pp collisions, 

1. Jetty: Back-to-back structure, indication of hard-QCD  
2. Isotropic: soft-QCD process

• Dominance of isotropic events in high multiplicity pp 
collisions

•  is higher for jetty events⟨pT⟩

S0 =
π2

4
× min . (Σi | ⃗p Ti

× ̂n |

Σi ⃗p Ti
)

2

̂n = (nx, ny,0)

A. Khuntia et al., J. Phys. G48, 035102 

pT = p2
x + p2

y
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Boosted Decision Trees
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Boosted Decision Trees
Root

Internal nodes

Leaf nodes
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Boosted Decision Trees
• Trees are structures that takes recursive 

decisions

• Built in a top-down approach

• Root node: The starting point 

Internal nodes: further decision points 
Leaf nodes: End points (target class or values)


• Criteria of splitting:  
Classification: Minimise the node impurity 
Regression: Minimise the MSE


• Splitting continues till a preset (max_depth)

• Boosting: Building an additive forward staged 

model by combining the outcomes of all 
previous ones


• Boosting compensates the shortcomings

• Shortcomings are identified as the gradient

Root

Internal nodes

Leaf nodes
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• Boosting: Building an additive forward staged 

model by combining the outcomes of all 
previous ones


• Boosting compensates the shortcomings

• Shortcomings are identified as the gradient

Root

Internal nodes

Leaf nodes

• The CART cost function for  feature with  
threshold:

kth tk

J(k, tk) =
mleft

m
Gleft +

mright

m
Gright

•  measures the impurity


•  number of instances in  subset


• Gini impurity, cross entropy, MSE, MAE etc.

Gleft/right

mleft/right left/right
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N. Mallick, S. Tripathy, A. N. Mishra, S. Deb, and R. Sahoo, Phys. Rev. D103, 094031 (2021)

Input observables and correlation

https://doi.org/10.1103/PhysRevD.103.094031
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• Pearsons correlation coefficient  
 
 

• Defines the degree of correlation
• Input Variables: ,  and  

Output variable: 
• Good correlation is seen among chosen input and output variables
• The algorithm tries to understand the correlation and exploit the 

features to arrive on a conclusion (a number)

⟨dNch/dη⟩ ⟨NTS
ch ⟩ ⟨pT⟩

b and S0

ρ =
cov(x, y)

σxσy

N. Mallick, S. Tripathy, A. N. Mishra, S. Deb, and R. Sahoo, Phys. Rev. D103, 094031 (2021)

Input observables and correlation

https://doi.org/10.1103/PhysRevD.103.094031
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• Loss Function: Least Square Loss
• Small learning rate = 0.1
• Number of trees = 100
• Training Size: 60,000 events (min. bias)

ΔS0 =
1

Nevents

Nevents

∑
n=1

|Strue
0n

− Spred.
0n

|

(Impact parameter)
(Spherocity)

J. H. Friedman, Ann. Stat. 29, 1189 (2001).

L. Breiman, J. H. Friedman, R. A. Olshen, and C. J. Stone, Classification and Regression 
Trees (Wadsworth & Brooks/ Cole Advanced Books & Software, Monterey, CA, 1984), p. 
358, https://doi.org/10.1002/cyto.990080516. 

N. Mallick, S. Tripathy, A. N. Mishra, S. Deb, and R. Sahoo, Phys. Rev. D103, 094031 (2021)

Parameters and training

Least Sqaure loss : l(yi, F(xi)) =
1
2

(yi − F(xi))2

https://doi.org/10.1214/aos/1013203451
https://doi.org/10.1002/cyto.990080516
https://doi.org/10.1103/PhysRevD.103.094031
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N. Mallick, S. Tripathy, A. N. Mishra, S. Deb, and R. Sahoo, Phys. Rev. D103, 094031 (2021)

Results

https://doi.org/10.1103/PhysRevD.103.094031
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• The ML model trained with 5.02 TeV 
minimum bias simulated data

• Most of the points populate the straight line 
inclined at an angle  with the x-axis

• The predictions for both impact parameter 
and spherocity distributions are in good 
agreement with the simulated data

45∘

Results

https://doi.org/10.1103/PhysRevD.103.094031
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Results
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• Centrality wise spherocity distributions
• Training is done using minimum bias simulated data
• BDT preserves the centrality (or multiplicity) dependence
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Elliptic Flow ( )v2



 Zimányi Winter School 2021 | Neelkamal Mallick21st 10

Elliptic Flow ( )v2
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Elliptic Flow ( )v2

x

y

px

py

Spatial anisotropy Azimuthal momentum space anisotropy
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Elliptic Flow ( )v2

• Elliptic flow describes the azimuthal momentum space anisotropy of particle emission for a non-
central heavy-ion collision

• The 2nd harmonic coefficient of the Fourier expansion of azimuthal momentum distribution 
( )

• Directly reflects the initial spatial anisotropy of the nuclear overlap region in the transverse plane
dN/dϕ

x

y

px

py

Spatial anisotropy Azimuthal momentum space anisotropy



 Zimányi Winter School 2021 | Neelkamal Mallick21st 10

Elliptic Flow ( )v2

E
d3N
dp3

=
d3N

pTdpTdydϕ
=

d2N
pTdpTdy

1
2π (1 + 2

∞

∑
n=1

vn cos[n(ϕ − ψn)]) v2(pT, y) = ⟨cos(2(ϕ − ψ2))⟩
ϕ = tan−1(py/px)

• Elliptic flow describes the azimuthal momentum space anisotropy of particle emission for a non-
central heavy-ion collision

• The 2nd harmonic coefficient of the Fourier expansion of azimuthal momentum distribution 
( )

• Directly reflects the initial spatial anisotropy of the nuclear overlap region in the transverse plane
dN/dϕ

x

y

px

py

Spatial anisotropy Azimuthal momentum space anisotropy
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Deep Neural Network (DNN)
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Deep Neural Network (DNN)
• ML Algorithm inspired from neurons in animal brains

• Three key layers 

Input: Takes the features as input 
Hidden layers: Connects to each neuron through different 
weights 
Output: Gives the result as a number or class


• Weights dictate the importance of an input  more important 
features get more weights


• Activation function: mathematical function that guides the 
outcome at each node  Standardize the values


• Cost function: Evaluates the accuracy between machine 
prediction and true value


• Optimizer: Method (or algorithm) that minimizes the cost 
function by automatically updating the weights

→

→
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Estimation of elliptic flow ( )v2

N. Mallick, S. Prasad, A. N. Mishra, R. Sahoo, and G. G. Barnaföldi (In preparation)
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Estimation of elliptic flow ( )v2

Serguei Chatrchyan et al., Phys.Rev.C 84 (2011), 024906

N. Mallick, S. Prasad, A. N. Mishra, R. Sahoo, and G. G. Barnaföldi (In preparation)

https://doi.org/10.1103/PhysRevC.84.024906
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Estimation of elliptic flow ( )v2
• Estimation of elliptic flow using Deep Neural Network

• Elliptic flow -> Event property

• Inputs ->Track property

•  space could be taken as the primary input space

• Three layers having different weights


• , mass and  weighted layers serve as the 
secondary input space

(η − ϕ)

pT log( sNN/s0)

Serguei Chatrchyan et al., Phys.Rev.C 84 (2011), 024906

N. Mallick, S. Prasad, A. N. Mishra, R. Sahoo, and G. G. Barnaföldi (In preparation)

https://doi.org/10.1103/PhysRevC.84.024906
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Pb-Pb, , AMPT SimulationsNN = 5.02 TeV
32 pixels

32
 p

ix
el

s

N. Mallick, S. Prasad, A. N. Mishra, R. Sahoo, and G. G. Barnaföldi (In preparation)

https://doi.org/10.1103/PhysRevC.84.024906
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DNN Model:

N. Mallick, S. Prasad, A. N. Mishra, R. Sahoo, and G. G. Barnaföldi (In preparation)
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• Each space has  pixels (grids)

• Total number of pixel points =  for each event

• DNN with the following architecture 

Input Layer: 128 Nodes 
Three hidden layers: 256 Nodes each 
Final layer : 1 node ( )

32 × 32
32 × 32 × 3 = 3072

v2

DNN Model:

N. Mallick, S. Prasad, A. N. Mishra, R. Sahoo, and G. G. Barnaföldi (In preparation)
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(None, 256)
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output:

(None, 256)
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DNN Model:

• Input and hidden layers have ReLu 
Activation


• Output layer has Linear activation

• Optimzer: , Loss function: 

• Max epoch: 100, Batch Size: 32

• Training:  Events (~60 GB)

• Validation:  Events

adam mse

2 × 105

10 %

N. Mallick, S. Prasad, A. N. Mishra, R. Sahoo, and G. G. Barnaföldi (In preparation)



 Zimányi Winter School 2021 | Neelkamal Mallick21st 14

1

10

210

C
ou

nt
s

0.4− 0.2− 0 0.2 0.4
true
2v

0.4−

0.2−

0

0.2

0.4

pr
ed

.
2v  = 5.02 TeV (min. bias)NNsPb-Pb, 

AMPT
| < 0.8η|
 = 0.00732vΔ

Results

N. Mallick, S. Prasad, A. N. Mishra, R. Sahoo, and G. G. Barnaföldi (In preparation)

Δv2 =
1

Nevents

Nevents

∑
n=1

|vtrue
2n

− vpred.
2n

|



 Zimányi Winter School 2021 | Neelkamal Mallick21st 15

Results

• DNN trained with 5.02 TeV minimum 
bias simulated data
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simulated and predicted values of 
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• Training done in the range:  

• Applied to different slices of -bins:  

[0.2, 0.4, 0.6, 0.8, 1.0, 1.25, 1.5, 1.75, 2.0, 2.5, 3.0]

• Elliptic flow as a function of transverse momentum

• DNN preserves the  dependence of 
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Summary

Problem? Learn Experience Decision!→ → →
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Summary

Problem? Learn Experience Decision!→ → →
• Report the first implementation of ML tools for the estimation of impact parameter, 

transverse spherocity, and  in heavy-ion collisions at the LHC


• Minimum bias training predicts centrality wise distributions


• ML preserves the centrality and energy dependence of particle production


• Final state particle information is used


• Training is resource hungry  application is faster and economic


• A learning process  Scope for improvements

v2

→

→
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• Report the first implementation of ML tools for the estimation of impact parameter, 

transverse spherocity, and  in heavy-ion collisions at the LHC


• Minimum bias training predicts centrality wise distributions


• ML preserves the centrality and energy dependence of particle production


• Final state particle information is used


• Training is resource hungry  application is faster and economic


• A learning process  Scope for improvements

v2

→

→

Thank you!



Back up
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Machine learning in HEP

https://iml-wg.github.io/HEPML-LivingReview/

https://iml-wg.github.io/HEPML-LivingReview/
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Machine learning in HEP

• ML needs a big data to achieve good 
accuracy and perform predictions


• Big data experiments such as the LHC, CERN 
provides ample opportunity to apply ML 
techniques to High Energy Physics (HEP)


• The data flow from all experiments in RUN2 
was about 25 GB/s


• A factor of 10x particle flow rate is expected 
in the high luminosity LHC era


• Requirements for faster simulation

• Faster computing, GPUs, FPGAs and ML are 

key to the future 

https://iml-wg.github.io/HEPML-LivingReview/

https://iml-wg.github.io/HEPML-LivingReview/
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• Heavy-ion physics and QGP 

phenomenology

https://iml-wg.github.io/HEPML-LivingReview/ https://root.cern/
https://root.cern/manual/tmva/
Scikit-learn: Machine Learning in Python, Pedregosa et al., JMLR 12, pp. 2825-2830, 2011

https://keras.io/
https://www.tensorflow.org/

TensorFlow, the TensorFlow 
logo and any related 
marks are trademarks of 
Google Inc.

https://iml-wg.github.io/HEPML-LivingReview/
https://root.cern/
https://root.cern/manual/tmva/
http://jmlr.csail.mit.edu/papers/v12/pedregosa11a.html
https://keras.io/
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N. Mallick, S. Tripathy, A. N. Mishra, S. Deb, and R. Sahoo, Phys. Rev. D103, 094031 (2021)

https://doi.org/10.1103/PhysRevD.103.094031
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