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Jets in Heavy Ion Collisions

Computation of such processes is complicated;  major focus on observables up to 𝒪(αs(Q⊥ ≫ T))

Single particle broadening 𝒪(α0
s ) Medium induced single gluon radiation 𝒪(αs)
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There are many assumptions going into these type of computations. Some are:

The leading parton is assumed to be eikonal

Recoiless background admits to be treated classically (stochatiscally)
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Jets in Heavy Ion Collisions

Medium is assumed to be static, homogeneous and infinitely long

A recent extension showed how to treat anisotropic flowing media in the dilute regime

Today

Today

Today

Such effects are sub-eikonal but enhanced by medium scale or are leading order effect

Broadening in anisotropic 
non-flowing media 

Dense regime: 
 Multiple medium-probe interactions
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Overview

Opacity Expansion approach

1 The Opacity Expansion and BDMPS-Z formalisms

2 Broadening in a dense anisotropic medium

BDMPS-Z approach

3 Final particle distribution 
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PRL 68, 1480 X.-N. Wang, M. Gyulassy

Medium model
The field generated by the medium reads 

Model dependent elastic scattering potential for source i 

No energy transfer in each scattering: transverse t-channel 
gluon exchanges only

Debye mass for gluon i 

We consider the Gyulassy-Wang model for the potential

We further assume that the interactions satisfy color neutrality in the 2-gluon approximation 

Probe interacts with the same scattering center in 
amplitude and conjugate amplitude

Only non-trivial correlator
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J(p − q) J†(p − q′￼)
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Compute all diagrams up to  field insertions2N

The Opacity Expansion: single particle broadening 1

In the simple case of homogeneous media, the particle distribution can be computed as follows

1

For example, the diagram with   insertions at distinct  readsr = N in

For each , square and average the respective diagramsN2

N = 1

N = 2

⟨ ⟩ ⟨ ⟩

⟨ ⟩
⟨ ⟩

⟨ ⟩

The full squared amplitude is then obtained by summing over all N

LPM phase factor

The averaging is performed by taking the limit of continuous distribution in the medium

∇ρ = 0

nucl-th/9306003, M. Gyulassy, X.-N. Wang

More details in for example: 



5

Resum the Opacity Series

1

In the simple case of homogeneous media, the particle distribution can be computed as follows
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A detailed derivation shows that the square amplitude for  insertions has the form2N

where we identify the effective scattering potential

The resummation in this case is simple: 

The Opacity Expansion: single particle broadening 
nucl-th/9306003, M. Gyulassy, X.-N. Wang

More details in for example: 
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The BDMPS-Z approach: single particle broadening 1

One can try to perform the resummation already at amplitude level. In this case the steps are

Compute an effective in-medium propagator1

This results in an effective propagator G

G G0 G0 G0
= ++ + …+

z = 0

z = L

(xL, L)

(x0,0)

Compute the relevant Feynman diagrams2

J(pin) J†(p̄in)G Gpp

1302.2579, Y. Mehtar-Tani, J. Milhano, K. Tywoniuk

More details in for example: 
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2) Perform the average before integration

1) Solve first the path integrals and then average

The BDMPS-Z approach: single particle broadening 1

One can try to perform the resummation already at amplitude level. In this case the steps are

Solve the remaining average of dressed propagators3

Two alternatives:

In practice, by solving the remaining integrals one performs the resummation of averaged quantities directly

In practice this option, implies performing resummation as in the Opacity Series approach

The key step is to use the fact that the color average of potential at different positions 

implies for ∇ρ = 0
No need to deal with double 

and single scattering 
diagrams explicitly
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Broadening in anisotropic media: Opacity Expansion approach2

∇ρ = 0

For anisotropic media this no longer holds
We perform a gradient expansion for the 2 relevant parameters:  and ρ μ

So that when averaging instead of a momentum space Dirac delta one obtains

With this modification, we find that the  order squared contribution now readsN

2Previously when averaging in we used
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Broadening in anisotropic media: Opacity Expansion approach2

3Proceeding as in we find that  

Resumming the opacity series then leads to the compact expression

∇ρ = ∇μ = 0

∇ρ, ∇μ ≠ 0
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Broadening in anisotropic media: BDMPS-Z approach2

3To linear order in gradients from we find now

One can still show that the 2-point correlator exponentiates

Combining all the results one just needs to compute

Center of mass of dipole Dipole size
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2

To solve the path integral it is convenient to go the center of mass coordinates

Since the action is linear in  one can solve it exactlyw

Broadening in anisotropic media: BDMPS-Z approach

At leading gradient accuracy we can solve the eom perturbatively 

uc = u(0)
c + u(1)

c

The relevant correlator then reads
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2 Broadening in anisotropic media: BDMPS-Z approach

The eom are further constrained to give

Contracting with the initial currents we find

Such that for real  this leads toJ

Same result as in Opacity Expansion approach
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3 Final particle distribution

The final distribution has the form

Usually a unit operator, but now it acts with  on initial distribution∇

In the literature this is sometimes referred to as single particle broadening distribution (when Fourier transformed)

Effective factorization no longer holds in general due to operator nature 

We consider first the case of a source with finite width

Still

It is possible to show that even though

higher odd moments can be generated, for example

N = 1 N = 2

Higher  terms dominate due to diverging potential at large momenta N

Coulomb logarithm
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3 Final particle distribution

The final distribution has the form

If we neglect initial state effects, then we are left with

where for GW model

In the hard region where it can be written in a closed form

Coulomb tail

In the complementary region where one has 

Usual Gaussian distribution

medium opacity
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3 Final particle distribution

For the full GW model we obtain

We use the parametric relation

To rewrite the full distribution in terms of the 
angle  and parameter α



Conclusions and Outlook

We computed the broadening distribution for non-flowing anisotropic media

We derived it in two jet quenching formalisms: Opacity Expansion and BDMPS-Z

Future plans:

Perform the resummation for gluon production

Final distribution generates leading odd moments 

Ongoing, J.B., X. Mayo, A. Sadofyev, C. Salgado 

Impact on jet substructure observables

Extensions to EIC set up


