Exploring jet transport coefficients in the strongly interacting quark-gluon plasma

Ilia Grishmanovskii (ITP, Frankfurt)

In collaboration with Taesoo Song, Olga Soloveva and Elena Bratkovskaya

Outline

- Introduction
- Dynamical QuasiParticle Model (DQPM)
- Transport coefficients in kinetic theory
- Results:
 - q-hat coefficient
 - drag coefficient and energy loss
- Summary

Introduction

What is jet?

A jet is a collimated spray of hadrons generated via successive parton branchings, starting with a highly energetic and highly virtual parton (quark or gluon) produced by the collision

Why do we study jets?

- Early formation time
- Modify medium properties
- Modified by the medium

How do we study jets?

- Transport coefficients
- ..

Dynamical QuasiParticle Model (DQPM)

- DQPM effective model for the description of non-perturbative (strongly interacting) QCD based on IQCD EoS
- The QGP phase is described in terms of interacting quasiparticles - massive quarks and gluons - with Lorentzian spectral functions:

$$ho_j(\omega,\mathbf{p}) = rac{4\omega\gamma_j}{\left(\omega^2-\mathbf{p}^2-M_j^2
ight)^2+4\gamma_j^2\omega^2}$$

 Field quanta are described in terms of dressed propagators with complex self-energies:

gluon propagator:
$$\Delta^{-1}=P^2-\Pi; \quad \text{quark propagator: } S_q^{-1}=P^2-\Sigma_q$$
 gluon self-energy: $\Pi=M_g^2-2i\gamma_g\omega; \quad \text{quark self-energy: } \Sigma_q=M_q^2-2i\gamma\omega$

- Real part of the self-energy thermal masses
- Imaginary part of the self-energy interaction widths of partons

P. Moreau et al., 10.1103/PhysRevC.100.014911

Dynamical QuasiParticle Model (DQPM)

Input: entropy density as a function of temperature for $\mu_{\rm R}$ =0

$$g^2(s/s_{SB}) = d((s/s_{SB})^e - 1)^f \ s_{SB}^{QCD} = 19/9\pi^2 T^3$$

Masses and widths of particles depend on the temperature of the medium and $\mu_{\rm B}$

$$M_g^2(T,\mu_q) = rac{g^2(T,\mu_q)}{6} igg(igg(N_c + rac{1}{2}N_figg)T^2 + rac{N_c}{2}\sum_qrac{\mu_q^2}{\pi^2}igg) \ \gamma_g(T,\mu_q) = rac{1}{3}N_crac{g^2(T,\mu_q)T}{8\pi} \mathrm{ln}igg(rac{2c}{g^2(T,\mu_q)} + 1igg)$$

P. Moreau et al., 10.1103/PhysRevC.100.014911

Partonic interactions in DQPM

DQPM partonic cross sections: leading order diagrams

quark propagator:

$$\frac{i}{q} = i\delta_{ij} \frac{q + M_q}{q^2 - M_q^2 + 2i\gamma_q q_0}$$

gluon propagator:

$$q^{\mu,a} = -i\delta_{ab} \frac{g^{\mu\nu} - q^{\mu}q^{\nu}/M_g^2}{q^2 - M_g^2 + 2i\gamma_g q}$$

 $qq' \rightarrow qq'$ scattering

 $gg \rightarrow gg$ scattering

 $qg \rightarrow qg$ scattering

DQPM differential cross sections

On-shell:

• final masses = pole masses

Off-shell:

integration over final masses

DQPM differential cross sections for different partons evaluated in the center of mass of the collision system

DQPM total cross sections

DQPM total cross sections for different partons evaluated in the center of mass of the collision system

• strong *T* dependence

• weak $\mu_{\scriptscriptstyle R}$ dependence

• strong channel dependence

Transport coefficients in kinetic theory

On-shell

integration over momentums

$$egin{aligned} \langle \mathcal{O}
angle^{ ext{on}} &= rac{1}{2E_i} \sum_{j=q,ar{q},g} d_j f_j \int rac{d^3 p_j}{(2\pi)^3 2E_j} \ & imes \int rac{d^3 p_1}{(2\pi)^3 2E_1} \int rac{d^3 p_2}{(2\pi)^3 2E_2} \ & imes (1 \pm f_1) (1 \pm f_2) \mathcal{O} |\overline{\mathcal{M}}|^2 (2\pi)^4 \delta^{(4)} (p_i + p_j - p_1 - p_2) \end{aligned}$$

Off-shell

- integration over momentums
- + two additional integrations over medium partons energy

$$egin{aligned} \langle \mathcal{O}
angle^{
m off} &= rac{1}{2E_i} \sum_{j=q,ar{q},g} d_j f_j \int rac{d^4 p_j}{(2\pi)^4}
hoig(\omega_j,\mathbf{p}_jig) heta(\omega_j) \ & imes \int rac{d^3 p_1}{(2\pi)^3 2E_1} \int rac{d^4 p_2}{(2\pi)^4}
hoig(\omega_2,\mathbf{p}_2ig) heta(\omega_2) \ & imes (1\pm f_1)(1\pm f_2) \mathcal{O} |\overline{\mathcal{M}}|^2 (2\pi)^4 \delta^{(4)}(p_i+p_j-p_1-p_2) \end{aligned}$$

$$\langle \mathcal{O}
angle = egin{cases} \mathcal{A}, & \mathcal{O} = (\mathbf{p} - \mathbf{p}') \ dE/d au, & \mathcal{O} = (E - E') \ \hat{q}, & \mathcal{O} = (p_t^2 - p_t'^2) \end{cases}$$

Results: q-hat, on-shell vs off-shell

Temperature dependence of the off-shell and on-shell scaled q-hat coefficient for the quark jet

ullet $\hat{q}_{ ext{off-shell}} < \hat{q}_{ ext{on-shell}}$

Momentum dependence of the off-shell and on-shell scaled q-hat coefficient for the quark jet

 $ullet \hat{q}(p)/T^3 \sim \log(p)$

K. M. Burke et al. (JET), Phys. Rev. C 90, 014909 (2014)

Results: q-hat, flavor dependence

Comparison between temperature dependent off-shell q-hat coefficients for the quark and gluon jets

ullet $\hat{q}_{
m quark} < \hat{q}_{
m gluon}$

Ratio of q-hat between quark and gluon jets

 $ullet \hat{q}_{
m quark}/\hat{q}_{
m gluon}
eq {
m const}$

Results: q-hat, mass and chem. pot. dependence

Mass and temperature dependence of the scaled q-hat coefficient for a quark jet

ullet $p_{
m jet}\gg M_{
m jet}$ ightarrow mass dependence is negligible

Chemical potential and temperature dependence of the scaled q-hat coefficient for a quark jet

Results: q-hat

Comparison of the temperature dependent q-hat coefficients for a quark jet

JET: K. M. Burke et al. (JET), Phys. Rev. C 90, 014909 (2014)

lattice QCD: A. Kumar et al., arxiv:2010.14463

HTL: Y. He et al., Phys. Rev. C 91 (2015)

Results: drag coefficient and energy loss

$$\langle \mathcal{O}
angle = egin{cases} \mathcal{A}, & \mathcal{O} = (\mathbf{p} - \mathbf{p}') \ dE/d au, & \mathcal{O} = (E - E') \ \hat{q}, & \mathcal{O} = (p_t^2 - p_t'^2) \end{cases}$$

$$E = \sqrt{\left| p
ight|^2 + m^2} pprox \left| p
ight| \ \Rightarrow \mathcal{A} pprox dE/d au$$

Temperature and momentum dependencies of the drag coefficient for a quark jet

Temperature and momentum dependencies of the energy loss for a quark jet

Summary and outlook

Summary:

- We have performed the evaluation of jet transport coefficients using Dynamical QuasiParticle Model
- q-hat coefficient is calculated as a function of
 - o temperature
 - o momentum of the jet
 - jet flavor
 - o mass of the jet
 - chemical potential
- drag coefficient and energy loss are calculated as a function of
 - temperature
 - o momentum of the jet

Future prospects:

• Investigate radiative processes

Thank you for your attention!