Jet transport coefficient \hat{q} in lattice QCD

AMIT KUMAR McGill University

Collaborators: Prof. Abhijit Majumder (Wayne State University, MI, USA)

Dr. Johannes Weber (Humboldt University of Berlin, Germany)

Date: Friday, December 10th, 2021

Outline

- \Box Phenomenology based extraction of transport coefficient \hat{q} in heavy-ion collisions
- \Box Formulating \hat{q} for hot QGP using Lattice gauge theory
- 1) Express \hat{q} as a series of local operators using dispersion relation
- 2) Computing operators on quenched SU(3) lattices
- 3) Computing operators on unquenched SU(3) lattices
- \Box Estimates of \hat{q} for pure gluon plasma and 2+1 flavor QGP

First systematic extraction of \hat{q} based on phenomenology

Leading parton going through medium

$$\hat{q}(\vec{r},t) = \frac{\langle \vec{k}_{\perp}^2 \rangle}{L}$$

- $\frac{\hat{q}}{T^3} \sim 3\text{-}6 \text{ , Decreases as } T \text{ increases}$
- \Box Based on fit to hadron- R_{AA} measurements
- ☐ Based on single energy-loss scheme

JET Collaboration (Burke et al. 2014)

First Bayesian extraction of \hat{q} based on phenomenology

Leading parton going through medium

$$\hat{q}(\vec{r},t) = \frac{\langle \vec{k}_{\perp}^2 \rangle}{L}$$

- $\frac{\hat{q}}{T^3} \sim 1\text{--}4 \text{ , Decreases as } T \text{ increases}$
- \Box Based on fit to hadron- R_{AA} measurements
- ☐ Based on Multi-stage energy-loss scheme

JETSCAPE Coll. (S. Cao et al. PRC 104, 024905, 2021)

Lattice formulation of \hat{q}

 Leading order (LO) process: A high energy quark propagating (along -ve z-dir) through plasma

Quark momentum:
$$q = (\mu^2/2q^-, q^-, 0) \sim (\lambda^2, 1, 0)q^-$$
;

where
$$\lambda < <1;$$
 $q^- = (q^0 - q^3)/\sqrt{2} \equiv \text{ hard scale}$

Transverse gluon:
$$k = (k^+, k^-, k_\perp) \sim (\lambda^2, \lambda^2, \lambda) q^-$$

$$\hat{q} = \sum_{k} k_{\perp}^{2} \frac{Disc\left[\mathcal{W}(k)\right]}{L^{0}}; \quad \mathcal{W}(k)$$
: scattering amplitude

$$\hat{q} = \frac{\alpha_{s}}{N_{c}} \int \frac{dy^{-}d^{2}y_{\perp}}{(2\pi)^{3}} d^{2}k_{\perp} e^{-i\frac{k_{\perp}^{2}}{2q^{-}}y^{-} + i\vec{k}_{\perp}\vec{y}_{\perp}}$$

$$\times \langle M \mid \text{Tr}[F^{+\perp_{\mu}}(y^{-}, y_{\perp})F^{+}_{\perp_{\mu}}(0)] \mid M \rangle$$
(Lattice QCD)

Non-perturbative part

A. Majumder, PRC 87, 034905 (2013)

Constructing a more general expression as \hat{Q}

***G**eneralized object \hat{Q} : with q^- fixed and q^+ is variable

$$\hat{Q}(q^{+}) = \frac{\alpha_{s}}{N_{c}} \int \frac{d^{4}y d^{4}k}{(2\pi)^{4}} e^{iky} q^{-\frac{\langle M | \text{Tr}[F^{+\perp}\mu(0)F_{\perp\mu}^{+}(y^{-},y_{\perp})] | M \rangle}{(q+k)^{2} + i\epsilon}}$$

$$\hat{Q} = \sum_{k} k_{\perp}^{2} \frac{\mathscr{W}(k)}{L^{0}};$$

$$\hat{q} = \sum_{k} k_{\perp}^{2} \frac{Disc\left[\mathscr{W}(k)\right]}{L^{0}};$$

► When $q^+ \sim 0 << q^-$:

Disc
$$\left[\hat{Q}(q^+)\right]\Big|_{q^+\sim 0} = \hat{q}$$

► When $q^+ = -q^-$:

$$\frac{1}{(q+k)^2} \simeq \frac{1}{-2q^-q^- + 2q^-(k^+ - k^-)} = -\frac{1}{2(q^-)^2} \left[1 - \left(\frac{k^+ - k^-}{q^-} \right) \right]^{-1} = -\frac{1}{2(q^-)^2} \left[\sum_{n=0}^{\infty} \left(\frac{\sqrt{2}k_z}{q^-} \right)^n \right]^{-1} = -\frac{1}{2(q^-)^2} \left[\sum_{n=0}^{\infty} \left(\frac{\sqrt{2}k_z}{q^-} \right$$

Perform d^4y and d^4k integration

$$\hat{Q}(q^{+} = -q^{-}) = \frac{\alpha_{S}}{2N_{c}q^{-}} \langle M | \text{Tr}[F^{+\perp_{\mu}}(0) \sum_{n=0}^{\infty} \left(\frac{i\sqrt{2D_{z}}}{q^{-}} \right) F_{\perp_{\mu}}^{+}(0)] | M \rangle$$

Extract \hat{q} using analytic continuation of $\hat{Q}(q^+)$

Contour C1:

$$I = \oint \frac{dq^{+}}{2\pi i} \frac{\hat{Q}(q^{+})}{(q^{+} + q^{-})} = \hat{Q}(q^{+} = -q^{-})$$

Extract \hat{q} using analytic continuation of $\hat{Q}(q^+)$

Contour C1:

$$I = \oint \frac{dq^{+}}{2\pi i} \frac{\hat{Q}(q^{+})}{(q^{+} + q^{-})} = \hat{Q}(q^{+} = -q^{-})$$

Contour C2: On extending it to infinity

$$I = \int_{-T_1}^{T_2} dq^{+} \frac{\hat{q}(q^{+})}{(q^{+} + q^{-})} + \int_{0}^{\infty} \frac{dq^{+}}{2\pi i} \frac{Disc[\hat{Q}(q^{+})]}{(q^{+} + q^{-})}$$

Pure thermal part

Pure Vacuum part

Width of thermal discontinuity $\approx 2T$ (HTL analysis)

\hat{q} as a series of local operators

Physical form of \hat{q} **at LO:**

$$\hat{q} = \frac{\alpha_s}{2N_c(T_1 + T_2)} \langle M | \operatorname{Tr}[F^{+\perp_{\mu}}(0) \sum_{n=0}^{\infty} \left(\frac{i\sqrt{2}D_z}{q^-} \right)^n F_{\perp_{\mu}}^+(0)] | M \rangle_{\text{(Thermal-Vacuum)}}$$

Rotating to Euclidean space: $x^0 \rightarrow -ix^4$; $A^0 \rightarrow iA^4$ $\Longrightarrow F^{0i} \to iF^{4i}$

X. Ji, PRL 110, 262002 (2013) Parton PDF: Operator product expansion with D_7 derivatives

❖ Non-zero operators:

LO operators at n=0: $\operatorname{Tr}\left[F^{3i}F^{3i}-F^{4i}F^{4i}\right]$

LO operators with D_z^2 derivative at n=2: $\text{Tr}\left[F^{3i}D_z^2F^{3i}-F^{4i}D_z^2F^{4i}\right]$

LO operators with D_z^4 derivative at n=4: Tr $[F^{3i}D_z^4F^{3i} - F^{4i}D_z^4F^{4i}]$

where, D_{τ} is covariant derivative along leading parton direction (z-dir)

Basic elements in lattice QCD

Pure SU(3) gauge action: Wilson's gauge action $\mathcal{O}(a^2) + \mathcal{O}(g_0^2 a^2)$,

(HotQCD) PRD 90, 094503 (2014) (TUMD) PRD 98, 054511 (2018)

- -Full QCD action: Highly-improved Staggered quark (HISQ) action
 - + Tree-level Symanzik improved gauge action $\mathcal{O}(a^4) + \mathcal{O}(g_0^2 a^2)$,
- Strange quark mass: fixed to physical value
- Light quark mass: fixed to $m_{u,d} = m_s/20 \longrightarrow m_\pi \approx 160 {\rm MeV}$ (in continuum),
- -Lattice beta-function: $R_{\beta} = -a \frac{d\beta_0}{da}$
- Configurations are generated using public version of MILC code

For pure SU(3) gauge:

$$a_{L} = \frac{f}{\Lambda_{L}} \left(\frac{11}{16\pi^{2}g_{0}^{2}} \right)^{\frac{-51}{121}} exp \left(-\frac{8\pi^{2}}{11g_{0}^{2}} \right)$$

$$T_c=265 {\rm MeV}, \Lambda_L=5.5 {\rm MeV}$$
 Tune $f(g_0^2)$ such that T_c/Λ_L is independent of g_0^2

Full QCD case:

Lattice spacing is determined using heavy quark and anti-quark potential

Renormalization of leading-twist operator

- Symmetry group in lattice formulation: $SO(4) \xrightarrow{broken} SW_4$ (hypercubic group)
- Similarity between Leading twist operator $Tr[FF] \equiv {
 m Tr} \left[F^{3i}F^{3i} F^{4i}F^{4i}\right]$ and energy-momentum tensor $T_{\mu\nu}^{G,(3)} = \left[F_{\mu\alpha}^a F_{\mu\alpha}^a F_{\nu\alpha}^a F_{\nu\alpha}^a\right]; \qquad Tr[FF] = \frac{1}{2}T_{34}^{G,(3)}$ Entropy density, $Ts = \epsilon + p = \langle T_{kk} T_{44} \rangle; \qquad Ts = T_{\mu\nu}^{G(3)}$
- Renormalization of triplet component of EMT in pure SU(3) gauge $T_{\mu\nu}^{G,(3),Ren} = Z^{(3)}T_{\mu\nu}^{G,(3),Bare}$
 - Non-perturbative finite momentum Ward Identities (WI) $Tr[FF]^{Ren} = Z^{(3)}Tr[FF]^{Bare}$
 - $Z^{(3)}$ determined in \overline{MS} for Wilson's plaquette action from Guisti, Pepe, PRD 91 (2015); PLB 769 (2017)
- Renormalization of triplet component of EMT in QCD requires complete mixing matrix

$$\begin{bmatrix} T_G^{(3)R} \\ T_Q^{(3)R} \end{bmatrix} = Z \begin{bmatrix} T_G^{(3)B} \\ T_Q^{(3)B} \end{bmatrix}, \qquad Z = \begin{bmatrix} Z_{GG}^{(3)} & Z_{GQ}^{(3)} \\ Z_{QG}^{(3)} & Z_{QQ}^{(3)} \end{bmatrix}$$

All four renormalization factors are unknown for HISQ+tree-level Symanzik improved gauge action

Leading-twist operator in quenched and unquenched SU(3) lattices

- Tad-pole (u_0) improved results and renormalized results differ by $\leq 10\%$
- Continuum extrapolation of FF correlator is consistent with $T_f=1/2$ scaled entropy density s/T^3

Full QCD case

■ Exact renormalization factors are unknown. We use estimates from tad-pole improved results, gluon fraction to entropy density as $R(T/T_c) = \frac{s^{n_f=0}/T^3}{s^{n_f=3}/T^3}$, with $T_c^{n_f=0} = 270$ MeV, $T_c^{n_f=3} = 155$ MeV, Systematic uncertainty ≤ 30 %

$\stackrel{\wedge}{q}$ for pure gluon plasma and 2+1 flavor QCD

- At high temperature: $\hat{q} \propto T^3$
 - $\hat{q}/T^3 \sim$ 1.5-2.0 (red solid band, 2+1 flavor QCD)
 - $\hat{q}/T^3 \sim$ 1.25-2.5 (red grid, 2+1 flavor QCD plasma)
 - $\hat{q}/T^3 \sim 0.75$ -1.25 (pure gluon plasma)
- At low temperature:

 \hat{q}/T^3 becomes smaller and No signature of log-dependence as in HTL form

(HTL formula) $\equiv \hat{q} \propto \alpha_s^2 T^3 \ln (E/T)$

- The qualitative behavior is similar to entropy density
- **■** Uncertainty

Solid red and blue band: uncertainty in scale $2\pi T < \mu < 4\pi T$ for strong coupling constant

Comparison with extractions from phenomenology and other framework

 Lattice extractions are consistent to JET and JETSCAPE collaboration extraction

■ Lattice extracted \hat{q} does not show a log-like behavior

$$\hat{q} \propto \alpha_s^2 T^3 \ln \left(\frac{E}{T}\right)$$
 (HTL formula)

- lacktriangle Stochastic vacuum model with $N_f=0$ has a similar shape. (Antonov, Pirner, EPJC55(2008))
- lacksquare Electrostatic QCD results with $N_f=2$ at high temperature T=2 GeV. (Panero, et al. PRL 112(2014))
- Hard-thermal loop results with $q^-=100$ GeV for $N_f=0$ and $N_f=3$ Amit Kumar (Zimányi school and workshop 2021), December 10th, 2021

Summary and Future work

\Box First calculation of \hat{q} on 4D lattice for pure SU(3) and 2+1 flavor QCD plasma

- $\hat{q}/T^3 \sim 0.75$ -1.25 (pure gluon plasma) and 1.25-2.5 (QCD plasma)
- Renormalized results in continuum for pure SU(3) case
- Consistent with JET and JETSCAPE collaboration results within their uncertainty band
- Analytic continuation to deep Euclidean space and expressed as local operators
- \hat{q} does not show a log-dependence as in the HTL formula

☐ Future work

- Compute exact renormalization factors in the case of full QCD.
- Understand the mixing fo higher-twist operators with lower-dimensional operators and proper renormalization
- Extend calculation to finer lattices $n_{\tau}=10,\,12$ and perform continuum extrapolation
- ullet Apply this method to compute jet transport coefficient \hat{e}_2

FF correlator in unquenched SU(3) lattices

- LO FF correlator is dominant among all operators
- ullet FF correlator with D_z^2 derivative are suppressed by a factor of 10^3 compared LO operator
- ullet FF correlates with D_z^4 derivative are suppressed by a factor of 10^6 compared LO operator

FF correlator in quenched SU(3) lattices

- LO FF correlator is dominant among all operators
- ullet FF correlator with D_{z}^{2} derivative are suppressed by a factor of 10^{3} compared LO operator
- ullet FF correlates with D_{z}^{4} derivative are suppressed by a factor of 10^{6} compared LO operator