Jet transport coefficient $\hat{\boldsymbol{q}}$ in lattice QCD

AMIT KUMAR
McGill University

Collaborators: Prof. Abhijit Majumder (Wayne State University, MI, USA)
Dr. Johannes Weber (Humboldt University of Berlin, Germany)
Date: Friday, December 10th, 2021

Outline

Phenomenology based extraction of transport coefficient $\hat{\boldsymbol{q}}$ in heavy-ion collisions

- Formulating $\hat{\boldsymbol{q}}$ for hot QGP using Lattice gauge theory

1) Express \hat{q} as a series of local operators using dispersion relation
2) Computing operators on quenched $\mathrm{SU}(3)$ lattices
3) Computing operators on unquenched $\mathrm{SU}(3)$ lattices

Estimates of $\hat{\boldsymbol{q}}$ for pure gluon plasma and 2+1 flavor QGP

First systematic extraction of \hat{q} based on phenomenology

Leading parton going through medium

$$
\hat{q}(\vec{r}, t)=\frac{\left\langle\vec{k}_{\perp}^{2}\right\rangle}{L}
$$

- $\frac{\hat{q}}{T^{3}} \sim$ 3-6, Decreases as T increases
- Based on fit to hadron- $R_{A A}$ measurements
- Based on single energy-loss scheme

JET Collaboration(Burke et al. 2014)

First Bayesian extraction of \hat{q} based on phenomenology

Leading parton going through medium

$$
\hat{q}(\vec{r}, t)=\frac{\left\langle\vec{k}_{\perp}^{2}\right\rangle}{L}
$$

- $\frac{\hat{q}}{T^{3}} \sim$ 1-4, Decreases as T increases
\square Based on fit to hadron- $R_{A A}$ measurements
\square Based on Multi-stage energy-loss scheme

JETSCAPE Coll. (S. Cao et al. PRC 104, 024905, 2021)

Lattice formulation of \hat{q}

- Leading order (LO) process: A high energy quark propagating (along -ve z-dir) through plasma

Quark momentum: $q=\left(\mu^{2} / 2 q^{-}, q^{-}, 0\right) \sim\left(\lambda^{2}, 1,0\right) q^{-}$; where $\lambda \ll 1 ; \quad q^{-}=\left(q^{0}-q^{3}\right) / \sqrt{2} \equiv$ hard scale

Transverse gluon: $k=\left(k^{+}, k^{-}, k_{\perp}\right) \sim\left(\lambda^{2}, \lambda^{2}, \lambda\right) q^{-}$

$$
\begin{gathered}
\hat{q}=\sum_{k} k_{\perp}^{2} \frac{\operatorname{Disc}[\mathscr{W}(k)]}{L^{0}} ; \mathscr{W}(k): \text { scattering amplitude } \\
\hat{\boldsymbol{q}}=\frac{\boldsymbol{\alpha}_{\boldsymbol{s}}}{\boldsymbol{N}_{\boldsymbol{c}}} \int \frac{\boldsymbol{d} \boldsymbol{y}^{-} \boldsymbol{d}^{2} \boldsymbol{y}_{\perp}}{(\mathbf{2} \boldsymbol{\pi})^{\mathbf{3}}} \boldsymbol{d}^{\mathbf{2}} \boldsymbol{k}_{\perp} \boldsymbol{e}^{-i \frac{k_{\perp}^{2}}{2 q^{-}} \boldsymbol{y}^{-}+i \overrightarrow{\boldsymbol{k}}_{\perp} \overrightarrow{\boldsymbol{y}}_{\perp}} \\
\mathbf{x}\langle M| \operatorname{Tr}\left[\boldsymbol{F}^{+\perp_{\mu}}\left(\boldsymbol{y}^{-}, \boldsymbol{y}_{\perp}\right) \boldsymbol{F}_{\perp_{\mu}}^{+}(0)\right]|M\rangle
\end{gathered}
$$

Constructing a more general expression as

*Generalized object $\hat{\mathbf{Q}}$: with q^{-}fixed and q^{+}is variable

$$
\begin{aligned}
& \hat{Q}=\sum_{k} k_{\perp}^{2} \frac{\mathscr{W}(k)}{L^{0}} \\
& \hat{q}=\sum_{k} k_{\perp}^{2} \frac{\operatorname{Disc}[\mathscr{W}(k)]}{L^{0}}
\end{aligned}
$$

- When $q^{+} \sim 0 \ll q^{-}$:

$$
\left.\operatorname{Disc}\left[\hat{Q}\left(q^{+}\right)\right]\right|_{q^{+} \sim 0}=\hat{q}
$$

- When $q^{+}=-q^{-}$:
$\frac{1}{(q+k)^{2}} \simeq \frac{1}{-2 q^{-} q^{-}+2 q^{-(}\left(k^{+}-k^{-}\right)}=-\frac{1}{2\left(q^{-}\right)^{2}}\left[1-\left(\frac{k^{+}-k^{-}}{q^{-}}\right)\right]^{-1}=-\frac{1}{2\left(q^{-}\right)^{2}}\left[\sum_{n=0}^{\infty}\left(\frac{\sqrt{2} k_{z}}{q^{-}}\right)^{n}\right]$
Perform $d^{4} y$ and $d^{4} k$ integration

$$
\begin{aligned}
& \text { rm } d^{4} y \text { and } d^{4} k \text { integration } \\
& \hat{Q}\left(q^{+}=-q^{-}\right)=\frac{\alpha_{s}}{2 N_{c} q^{-}}\langle M| \operatorname{Tr}\left[F^{+\perp_{\mu}(0)} \sum_{n=0}^{\infty}\left(\frac{i \sqrt{2} D_{z}}{q^{-}}\right)^{n} F_{\perp_{\mu}}^{+}(0)\right]|M\rangle
\end{aligned}
$$

Extract \hat{q} using analytic continuation of $\hat{Q}\left(q^{+}\right)$

Extract \hat{q} using analytic continuation of $\hat{\varrho}\left(q^{+}\right)$

\hat{q} as a series of local operators

* Physical form of \hat{q} at LO:
$\hat{q}=\frac{\alpha_{s}}{2 N_{c}\left(T_{1}+T_{2}\right)}\langle M| \operatorname{Tr}\left[F^{+\perp_{\mu}(0)} \sum_{n=0}^{\infty}\left(\frac{i \sqrt{2} D_{z}}{q^{-}}\right)^{n} F_{\perp_{\mu}}^{+}(0)\right]|M\rangle_{(\text {Thermal-Vacuum })}$
X. Ji, PRL 110, 262002 (2013) Parton PDF: Operator product expansion with \boldsymbol{D}_{z} derivatives

Rotating to Euclidean space: $\quad x^{0} \rightarrow-i x^{4} ; A^{0} \rightarrow i A^{4}$

$$
\Longrightarrow F^{0 i} \rightarrow i F^{4 i}
$$

* Non-zero operators:

LO operators at $\mathrm{n}=0: \operatorname{Tr}\left[F^{3 i} F^{3 i}-F^{4 i} F^{4 i}\right]$
LO operators with D_{z}^{2} derivative at $\mathrm{n}=2: \quad \operatorname{Tr}\left[F^{3 i} D_{z}^{2} F^{3 i}-F^{4 i} D_{z}^{2} F^{4 i}\right]$
LO operators with D_{z}^{4} derivative at $\mathrm{n}=4: \quad \operatorname{Tr}\left[F^{3 i} D_{z}^{4} F^{3 i}-F^{4 i} D_{z}^{4} F^{4 i}\right]$
where, \boldsymbol{D}_{z} is covariant derivative along leading parton direction (z-dir) 9

Basic elements in lattice QCD

-Pure SU(3) gauge action: Wilson's gauge action $\mathcal{O}\left(a^{2}\right)+\mathcal{O}\left(g_{0}^{2} a^{2}\right)$
(HotQCD) PRD 90, 094503 (2014) (TUMD) PRD 98, 054511 (2018)
-Full QCD action: Highly-improved Staggered quark (HISQ) action

+ Tree-level Symanzik improved gauge action $\mathcal{O}\left(a^{4}\right)+\mathcal{O}\left(g_{0}^{2} a^{2}\right)$,
-Strange quark mass: fixed to physical value
-Light quark mass: fixed to $m_{u, d}=m_{s} / 20 \longrightarrow m_{\pi} \approx 160 \mathrm{MeV}$ (in continuum),
Lattice beta-function: $R=-a \frac{d \beta_{0}}{\text { Configurations are generated using public version of MILC code }}$
-Lattice beta-function: $R_{\beta}=-a \frac{d \beta_{0}}{d a}$

-For pure SU(3) gauge:

$$
\begin{aligned}
& a_{L}=\frac{f}{\Lambda_{L}}\left(\frac{11}{16 \pi^{2} g_{0}^{2}}\right)^{\frac{-51}{121}} \exp \left(-\frac{8 \pi^{2}}{11 g_{0}^{2}}\right) \\
& T_{c}=265 \mathrm{MeV}, \Lambda_{L}=5.5 \mathrm{MeV} \\
& \text { Tune } f\left(g_{0}^{2}\right) \text { such that } T_{c} / \Lambda_{L} \text { is } \\
& \text { independent of } g_{0}^{2}
\end{aligned}
$$

-Full QCD case:
Lattice spacing is determined using heavy quark and anti-quark potential

Renormalization of leading-twist operator

- Symmetry group in lattice formulation: $S O(4) \xrightarrow{\text { broken }} S W_{4}$ (hypercubic group)
- Similarity between Leading twist operator $\operatorname{Tr}[F F] \equiv \operatorname{Tr}\left[F^{3 i} \boldsymbol{F}^{3 i}-\boldsymbol{F}^{4 i} \boldsymbol{F}^{4 i}\right]$ and energy-momentum tensor Triplet component of energy momentum tensor $T_{\mu \nu}^{G,(3)}=\left[F_{\mu \alpha}^{a} F_{\mu \alpha}^{a}-F_{\nu \alpha}^{a} F_{\nu \alpha}^{a}\right] ; \quad \operatorname{Tr}[F F]=\frac{1}{2} T_{34}^{G,(3)}$
Entropy density, $T s=\epsilon+p=<T_{k k}-T_{44}>; \quad T s=T_{\mu \nu}^{G(3)}$
- Renormalization of triplet component of EMT in pure SU(3) gauge $T_{\mu \nu}^{G,(3), R e n}=Z^{(3)} T_{\mu \nu}^{G,(3), \text { Bare }}$
- Non-perturbative finite momentum Ward Identities (WI) $\quad \operatorname{Tr}[F F]^{\operatorname{Ren}}=Z^{(3)} \operatorname{Tr}[F F]^{\text {Bare }}$
- $Z^{(3)}$ determined in $\overline{M S}$ for Wilson's plaquette action from Guisti, Pepe, PRD 91 (2015); PLB 769 (2017)
- Renormalization of triplet component of EMT in QCD requires complete mixing matrix

$$
\left[\begin{array}{l}
T_{G}^{(3) R} \\
T_{Q}^{(3) R}
\end{array}\right]=Z\left[\begin{array}{l}
T_{G}^{(3) B} \\
T_{Q}^{(3) B}
\end{array}\right], \quad Z=\left[\begin{array}{cc}
Z_{G G}^{(3)} & Z_{G Q}^{(3)} \\
Z_{Q G}^{(3)} & Z_{Q Q}^{(3)}
\end{array}\right]
$$

All four renormalization factors are unknown for HISQ+tree-level Symanzik improved gauge action

Leading-twist operator in quenched and unquenched SU(3) lattices

-Tad-pole $\left(u_{0}\right)$ improved results and renormalized results differ by $\leq 10 \%$

- Continuum extrapolation of FF correlator is consistent with $T_{f}=1 / 2$ scaled entropy density s / T^{3}

- Full QCD case

- Exact renormalization factors are unknown. We use estimates from tad-pole improved results, gluon fraction to entropy density as $R\left(T / T_{c}\right)=\frac{s^{n_{f}=0} / T^{3}}{s^{n_{f}=3} / T^{3}}$, with $T_{c}^{n_{f}=0}=270 \mathrm{MeV}, T_{c}^{n_{f}=3}=155 \mathrm{MeV}$, Systematic uncertainty $\leq 30 \%$

\hat{q} for pure gluon plasma and 2+1 flavor QCD

■ At high temperature: $\hat{q} \propto T^{3}$

- $\hat{q} / T^{3} \sim 1.5-2.0$ (red solid band, 2+1 flavor QCD)
- $\hat{q} / T^{3} \sim 1.25-2.5$ (red grid, 2+1 flavor QCD plasma)
- $\hat{q} / T^{3} \sim$ 0.75-1.25 (pure gluon plasma)

■ At low temperature:
\hat{q} / T^{3} becomes smaller and No signature of log-dependence as in HTL form
(HTL formula) $\equiv \hat{q} \propto \alpha_{s}^{2} T^{3} \ln (E / T)$
■ The qualitative behavior is similar to entropy density

■ Uncertainty
Grid line: 30\% error from renormalization (corrections from quark and gluon renormalization) Solid red and blue band: uncertainty in scale $2 \pi T<\mu<4 \pi T$ for strong coupling constant

Comparison with extractions from phenomenology and other framework

- Lattice extractions are consistent to JET and JETSCAPE collaboration extraction
- Lattice extracted $\hat{\boldsymbol{q}}$ does not show a log-like behavior

$$
\hat{q} \propto \alpha_{s}^{2} T^{3} \ln \left(\frac{E}{T}\right)(\text { HTL formula })
$$

■ Stochastic vacuum model with $N_{f}=0$ has a similar shape. (Antonov, Pirner, EPJC55(2008))
■ Electrostatic QCD results with $N_{f}=2$ at high temperature $T=2 \mathrm{GeV}$. (Panero, et al. PRL 112(2014))
■ Hard-thermal loop results with $q^{-}=100 \mathrm{GeV}$ for $N_{f}=0$ and $N_{f}=3$

Summary and Future work

First calculation of $\hat{\boldsymbol{q}}$ on 4D lattice for pure $\operatorname{SU(3)}$ and $\mathbf{2 + 1}$ flavor QCD plasma

- $\hat{q} / T^{3} \sim 0.75-1.25$ (pure gluon plasma) and 1.25-2.5 (QCD plasma)
- Renormalized results in continuum for pure SU(3) case
- Consistent with JET and JETSCAPE collaboration results within their uncertainty band
- Analytic continuation to deep Euclidean space and expressed as local operators
- \hat{q} does not show a log-dependence as in the HTL formula

F Future work

- Compute exact renormalization factors in the case of full QCD.
- Understand the mixing fo higher-twist operators with lower-dimensional operators and proper renormalization
- Extend calculation to finer lattices $\boldsymbol{n}_{\boldsymbol{\tau}}=\mathbf{1 0 , 1 2}$ and perform continuum extrapolation
- Apply this method to compute jet transport coefficient \hat{e}_{2}

FF correlator in unquenched SU(3) lattices

- LO FF correlator is dominant among all operators
- FF correlator with $\boldsymbol{D}_{z}^{\mathbf{2}}$ derivative are suppressed by a factor of $\mathbf{1 0}^{\mathbf{3}}$ compared LO operator
- FF correlates with \boldsymbol{D}_{z}^{4} derivative are suppressed by a factor of $\mathbf{1 0}^{6}$ compared LO operator

FF correlator in quenched SU(3) lattices

- LO FF correlator is dominant among all operators
- FF correlator with $\boldsymbol{D}_{z}^{\mathbf{2}}$ derivative are suppressed by a factor of $\mathbf{1 0}^{\mathbf{3}}$ compared LO operator
- FF correlates with \boldsymbol{D}_{z}^{4} derivative are suppressed by a factor of $\mathbf{1 0}^{6}$ compared LO operator

