
Partial chemical equilibrium

Boris Tomášik

Univerzita Mateja Bela, Banská Bystrica, Slovakia
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Motivation - why partial chemical equilibrium?

Statistical production can be used to describe hadron abundances and also their spectra
(Simple) statistical model of interacting hadrons: interactions via inclusion of (free)
resonance states [R. Dashen, S.K. Ma, H.J. Bernstein, Phys. Rev. 187 (1969) 345]

Chemical freeze-out

Hadron abundances set by three (four)
parameters: V , Tch, µB , (γs)

T ∼ 140− 160 MeV
(
√
sNN dependent, above 7.7 GeV)

Kinetic freeze-out

Sets the pT spectra

need transverse expansion

slope due to Tk and 〈vt〉
Tk ∼ 80− 120 MeV (also higher)

How to build a scenario with chemical and kinetic freeze-out?

need to freeze the effective numbers of stable hadrons—projected numbers after decays of
all resonances Neff

h =
∑

r pr→h〈Nr 〉
Assumption: at chemical freeze-out inelastic collisions stop and elastic continue
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The chemical potentials

ground state species do not change one into other ⇒
chemical potential for each

towers of resonances above every stable hadron species

resonances always in equilibrium with ground state
⇒ it does not cost extra energy to produce or decay
resonance into stable species

resonance chemical potentials from those of stable
hadrons, e.g. µρ = 2µπ , µω = 3µπ

resonances that decay into two different stable species,
e.g. µ∆ = µN + µπ , µK(892) = µπ + µK

π

ΝΝ

Κ

ΝΝ

.  .  .

Resonances with more decay channels, chain decays:

µR =
∑

h

pR→hµh

[H. Bebie, P. Gerber, J.L. Goity, H. Leutwyler, Nucl. Phys. B 378 (1992) 95]
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Evolution of chemical potentials

Keep the (effective stable) particle numbers constant, as a function of temperature!

〈Neff
h 〉 =

∑
r

pr→hV (T )nr (T , {µ(T )}) , d〈Neff
h 〉

dT
= 0

−
dV
dT

V

∑
r

pr→hnr (T ) =
∑

r

pr→h
dnr (T )

dT

Obtain the derivative of volume from entropy conservation: 0 = dS/dT = d(sV )/dT

−
dV
dT

V
=

ds
dT

s

Equations for the evolution of chemical potentials∑
r pr→h

dnr (T ,{µ(T )})
dT

ds/dT
=

1

s

∑
r

pr→hnr (T , {µ(T )})
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Evolution of chemical potentials: results

Start the evolution of chemical potentials at the chemical freeze-out
[STAR collab., Phys. Rev. C 96 (2017) 044904 and ALICE collab., Nucl. Phys. A 904-905 (2013) 531c]
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Fluctuations of net-baryon number

Cumulants of the net-baryon number distribution from derivatives of logZ

∂ lnZ

∂ µB
T

= 〈B〉 = µ1 = κ1 = VT 3χ1

∂2 lnZ

∂
(µB

T

)2
= 〈B2〉 − 〈B〉2 = µ2 = κ2 = σ2 = VT 3χ2

∂3 lnZ

∂
(µB

T

)3
= 〈B3〉 − 3〈B2〉〈B〉+ 2〈B〉3 = µ3 = κ3 = VT 3χ3

∂4 lnZ

∂
(µB

T

)4
= 〈B4〉 − 4〈B3〉〈B〉 − 3〈B2〉2 + 12〈B2〉〈B〉2 − 6〈B〉4 = µ4 − 3µ2

2 = κ4 = VT 3χ4

∂5 lnZ

∂
(µB

T

)5
= κ5 = VT 3χ5 ,

∂6 lnZ

∂
(µB

T

)6
= κ6 = VT 3χ6

central moments µi , cumulants κi , susceptibilities χi
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Combinations of cumulants

variance, skewness, kurtosis, hyperskewness, hyperkurtosis

σ2 = κ2 , S =
κ3

κ
3/2
2

, κ =
κ4

κ2
2

, SH =
κ5

κ
5/2
2

, κH =
κ6

κ3
2

,

These cumulants, moments, and their combinations still depend on volume
⇒ construct volume-independent combinations

χ2

χ1
=
κ2

κ1
=
σ2

M

χ3

χ2
=
κ3

κ2
= Sσ

χ4

χ2
=
κ4

κ2
= κσ2

χ5

χ1
=
κ5

κ1
=

SHσ5

M

χ5

χ2
=
κ5

κ2
= SHσ3 χ6

χ2
=
κ6

κ1
= κHσ4
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Connection to the phase diagram

Enhanced fluctuations close to the critical
point

Illustration:
Susceptibilities from the Ising model
(same universality class)
[J.W. Chen et al.: Phys. Rev. D 95 (2017) 014038]
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FIG. 1. Upper panel: κ2,3,4(H) at fixed t > 0. Lower panel:
the Ising model phase diagram with Line A the maximum of
κ3 (also κ4 = 0), and Line B the maximum of κ4. The curved
lines are example freeze-out lines, drawn to model how they
may pass through the scaling region in QCD.

leading, model-dependent, analytic contributions. Our
strategy is to draw a few generic freeze out lines, de-
picted in the lower panels of Fig. 2 and Fig. 1, then ask
whether there are common features of susceptibilities on
those lines. In Fig. 1, we assume that the freeze out line
is a function of t. Going from high to low t, the sim-
plest case is FO1, which crosses lines A and B once each.
The corresponding κ4-κ3 curve is shown in Fig. 3 with
the curve going anti-clockwise forming a “banana” shape
from high to low t. This figure shows the ordering

tmin,κ4 > tmax,κ3 > tmax,κ4 > 0 , (5)

necessarily arises from the derivative relation between the
κn and κn+1. All features occur at temperature higher
than the critical point temperature. As the fluctuations
become larger closer to the CEP , the closer the freeze
out line to the CEP , the larger and more elongated the
banana is.

In Fig. 1, we also consider a freeze out line FO2 that

FIG. 2. Upper left (right): density plot of κ3 (κ4) in the Ising
model. Regions of κi > 0 are in blue and κi < 0 are in red.
The dotted (black) line is the same as Line A in Fig. 1 and dot-
dashed (red) line the same as Line B. Lower panel: A sketch of
the peaks in χ3 and χ4 on a plausible phase diagram of QCD
together with a hypothetical freeze-out line. Comparison to
the location of the maxima in χ3 and χ4 in Fig. 1 suggests how
the freeze-out line may be mapped into the Ising coordinates.

crosses line B twice. The corresponding κ4-κ3 plot in Fig.
3 also has the banana shape but has two local maximum
peaks in κ4. Those features remain when one plots m2-
m1 instead of κ4-κ3 since κ2 changes slowly when κ3(4)

changes rapidly.

One can draw other possible freeze out lines, but the
feature of an anti-clock wise loop remains, provided the
line remains in the H < 0 half-plane as is physically
sensible for freeze-out in the hadronic phase. This can
be seen from the fact that at high t, the freeze out line
can start from the regime above line A, between lines A
and B, or below line B, while at low t, it goes below line
B. This implies these freeze out lines at high and low t
will look very similar to FO1 and FO2 in Fig. 3 near the
origin. This is enough to decide the loop is anti-clock
wise which is a feature in common with experiment data
[15, 16, 23].

Scenario II: CEP at T <∼ 0—As we argue above,
the banana shape in m2-m1 is due to the scaling symme-
try governed by the CEP . But could this connection be
so strong such that the banana shape is observable even
if the CEP is at T = 0 or even T < 0? One example
is high-Tc superconductors [18]. It is hypothesized that
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Data: enhanced net-proton number fluctuations at
√
sNN = 7.7 GeV

Not all baryons are measurable

net-proton number as proxy for
the net baryon number

enhanced κ4/κ2 at√
sNN = 7.7 GeV

not reproduced by theoretical
calculations

What would be the prediction of
statistical model with PCE?

6

maximum number of participants, Nmax
part (394 for Au+Au

collisions), suppresses the initial volume fluctuations.

FIG. 3. Centrality dependence of the proton cumulant ratios
for Au+Au collisions at p

sNN = 3.0 GeV. Protons are from
�0.5 < y < 0 and 0.4 < pT < 2.0 GeV/c. Systematic uncer-
tainties are represented by gray bars. Statistical uncertainties
are smaller than marker size. CBWC is applied to all cumu-
lant ratios. While open squares represent the data without
correction, blue triangles and red circles are the results with
VFC using the hNparti distributions from the UrQMD and
Glauber models, respectively.

FIG. 4. Similar to Fig. 3: Rapidity and transverse mo-
mentum dependence of the proton cumulant ratios for 0–5%
central collisions. Black-squares, red-dots and blue-triangles
stand for data without and with the VFC using Glauber and
UrQMD, respectively.

Figure 4 depicts the cumulant ratios as a function of
rapidity y and transverse momentum pT in 0–5% central
collisions without and with the VFC. It is expected [45–

47] that the cumulant ratios approach the Poisson base-
line in the limit of small acceptance. For C3/C2, the ra-
tios with the VFC (UrQMD) and without the VFC devi-
ate from the Poisson baseline at the narrow rapidity win-
dows. The VFC (Glauber) ratio approaches unity as the
acceptance is decreased. For the C4/C2 ratio, the VFC
has a negligible effect in the most central bin. Therefore,
C4/C2 is reported without VFC in the discussions below.
In the central 0–5% collisions, as shown in Fig. 4, one ob-
tains C4/C2 = �0.85 ± 0.09 (stat.) ± 0.82 (syst.) in the
kinematic acceptance of �0.5 < y < 0 and 0.4 < pT < 2.0
GeV/c. The UrQMD model qualitatively reproduces the
acceptance dependence of the data, see Fig. 6 in the sup-
plemental material [37].

FIG. 5. Collision energy dependence of the ratios of cumu-
lants, C4/C2, for proton (squares) and net-proton (red circles)
from top 0–5% Au+Au collisions at RHIC [14, 15]. The points
for protons are shifted horizontally for clarity. The new re-
sult for proton from p

sNN = 3.0 GeV collisions is shown as a
filled square. HADES data of psNN = 2.4 GeV 0–10% colli-
sions [48] is also shown. The vertical black and gray bars are
the statistical and systematic uncertainties, respectively. In
addition, results from the HRG model, based on both Canon-
ical Ensemble (CE) and Grand-Canonical Ensemble (GCE),
and transport model UrQMD are presented.

A non-monotonic energy dependence of the net-proton
C4/C2 was reported for 0–5% central Au+Au collisions
at p

s
NN

= 7.7–200 GeV [14, 15]. A similar energy de-
pendence of the C4/C2 of protons is also evident (open
squares in Fig. 5). Though a minimum appears around
20 GeV, both the C4/C2 ratio of protons and net-protons
at 7.7 GeV are close to unity, albeit the large statistical
uncertainties. Meanwhile, the C4/C2 value for Au+Au
collisions at ps

NN
= 3.0 GeV is around �1. The negative

value of the proton C4/C2 is reasonably reproduced by
the transport model UrQMD [17, 49].

The study of cumulant ratios in heavy-ion colli-
sions has motivated several QCD inspired model cal-

[STAR collaboration: 2112:00240]
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Net-proton number fluctuations from PCE

Not calculable as derivatives of the partition function!
derivatives of logZ only contain fluctuations due to exchange with the heat bath
decays of resonances are random and may randomize proton number (even at fixed B)

cumulants of proton and antiproton number via derivatives of the generating function〈
(∆N)l

〉
c

=
dlK (iξ)

d(iξ)l

∣∣∣∣
ξ=0

K (iξ) = ln
∞∑

N=0

e iξNP(N) =
∑

R

ln


∞∑

NR =0

PR(NR)
(
e iξpR + (1− pR)

)NR


PR(NR): number probability of resonance R, furnished by statistical model

Net-proton number cumulants obtained via〈
(∆Np−p̄)l

〉
c

=
〈

(∆Np)l
〉

c
+ (−1)l

〈
(∆Np̄)l

〉
c
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Net-proton number fluctuations from PCE, part 2

Cumulants of the resonance number distributions

〈NR 〉c =
gRV

2π2
m2

RT
∞∑

j=1

(∓1)j−1

j
e jµR/TK2

(
jmR

T

)
,

〈
(∆NR)l

〉
c

=
gRV

2π2
m2

RT
∞∑

j=1

(∓1)j−1j l−2e jµR/TK2

(
jmR

T

)
.

first terms in the sums correspond to Boltzmann approximation (not BE or FD)

In Boltzmann approximation, cumulants of all orders are the same!
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Results for net-proton cumulants in PCE
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Results for K+ − K− cumulants in PCE
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Production of resonances

Chemical equilibrium

chemical potentials due to conserved
quantum numbers (B, S , Q)

resonance abundance suppressed due to
their higher mass

Corrections to chemical equilibrium

resonances decay, but their daughter
particles are not reconstructed

by interactions, resonances are restored
(to what extent?)

Observed abundance of resonances bears information about the microscopic dynamics
within the hadronic fireball.

Partial chemical equilibrium

At every temperature, resonances are in equilibrium with their own daughter hadrons

specific predictions on their abundances and the ratios Neff
R /Neff

h ; they depend on T

effective number of resonances includes contributions from decays of heavier resonances
Neff

R =
∑

r pr→RNr

Can Partial Chemical Equilibrium with some T reproduce data on resonance production?
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Ratio ρ0/π (and how to read the results)

[ALICE collab., Phys. Rev. C 99 (2019) 064901] [Figure: Sándor Lökös]
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Ratio K ∗/K

indicated lower freeze-out
temperature in central
collisions

Tkin never below 95 MeV

[ALICE collab., Phys. Rev. C 91 (2015) 024609]

[ALICE collab., Phys. Rev. C 95 (2017) 064606]

[STAR collab., Phys. Rev. C 84 (2011) 034909]

[STAR collab., Phys. Rev. Lett. 97 (2006) 032301]

[Figure: Sándor Lökös]
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Ratio φ/K

data in mid central collisions
above the PCE calculations

[ALICE collab., Phys. Rev. C 91 (2015) 024609]

[STAR collab., Phys. Rev. C 70 (2009) 064903]

[STAR collab., Phys. Rev. C 84 (2011) 034909]

[STAR collab., Phys. Rev. Lett. 97 (2006) 032301]

[Figure: Sándor Lökös]
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Summary of extracted temperatures

[Figure: Sándor Lökös]
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Conclusions

Partial Chemical Equilibrium
keeps effective numbers of stable species konstant independent of temperature
no reactions that would change one stable species into another (off equilibrium)
resonances in equilibrium with stable species

Results from Partial Chemical Equilibrium on net-proton number fluctuations
[B. Tomášik, P. Hillmann, M. Bleicher, Phys.Rev.C 104 (2021) 044907]

volume-independent ratios of cumulants of net-proton number are almost temperature
independent ⇒ they reflect values at chemical freeze-out
experimental data on cumulants at low energies are not reproduced

Results for resonance production
ρ0/π and K∗/K qualitatively: lower FO temperature in central collisions, quantitatively
disagreement with kinetic FO fits
φ/K does not follow this trend, some centralties have too many φs

Possible improvements to PCE
take into account entropy production
include hadron interactions via phase shifts
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