* Stony Brook University

Imaging nuclear structure in heavy-ion collisions

Jiangyong Jia

Brookhaven National Laboratory

Office of Science | U.S. Department of Energy

12/06/2021 Zimanyi school

Hydrodynamic response to initial state

Previous works: PRC34.185, PRC61.021903, PRC61.034905, PRC.80.054903, nucl-th/0411054, 0712.0088, 1409.8375, 1507.03910, 1609.01949,1711.08499, 2007.00780.2103.05595. H. Stocker, W. Geiner, BA Li, E. Shuryak, PBM, U. Heinz, P. Philip, N.Xu, Q. Shou, P. Sorensen, F. Videbaek, A. Tang, P. Dasgupta, R. Chatterjee, D. Krivastava, F.Wang, H. Xu, Jaki. M. Luzum, P.Carzon...

Shape of nuclei

Most ground state stable nuclei are deformed

$$\rho(r,\theta,\phi) = \frac{\rho_0}{1+e^{(r-R(\theta,\phi))/a_0}}$$
$$R(\theta,\phi) = R_0 \left(1 + \frac{\beta_2}{\beta_2} \left[\cos\gamma Y_{2,0} + \sin\gamma Y_{2,2} \right] + \frac{\beta_3}{\beta_3} \sum_{m=-3}^3 \alpha_{3,m} Y_{3,m} + \frac{\beta_4}{\beta_4} \sum_{m=-4}^4 \alpha_{4,m} Y_{4,m} \right)$$

Triaxial spheroid: $a \neq b \neq c$.

Prolate: $a=b<c \rightarrow \beta_2$, $\gamma=0$ Oblate: $a<b=c \rightarrow \beta_2$, $\gamma=\pi/3$ or $-\beta_2, \gamma=0$

Shape of nuclei

$$\rho(r,\theta,\phi) = \frac{\rho_0}{1+e^{(r-R(\theta,\phi))/a_0}}$$

$$R(\theta,\phi) = R_0 \left(1+\beta_2 [\cos\gamma Y_{2,0}+\sin\gamma Y_{2,2}]+\beta_3 \sum_{m=-3}^3 \alpha_{3,m} Y_{3,m}+\beta_4 \sum_{m=-4}^4 \alpha_{4,m} Y_{4,m}\right)$$

Radial structure of nuclei

Α

Nuclear structure vs HI method

• Shape from B(En), radial profile from e+A or ion-A scattering

«rotational» spectrum

Probe entire mass distribution: multi-point correlations

$$egin{aligned} S(\mathbf{s}_1,\mathbf{s}_2) &\equiv \langle \delta
ho(\mathbf{s}_1) \delta
ho(\mathbf{s}_2)
angle \ &= \langle
ho(\mathbf{s}_1)
ho(\mathbf{s}_2)
angle - \langle
ho(\mathbf{s}_1)
angle \langle
ho(\mathbf{s}_2)
angle. \end{aligned}$$

nuclear shape imaging via collective flow response

Evidence of deformation in U+U vs Au+Au

Parametric dependence

• $\mathbf{\varepsilon}_{\mathsf{n}}$ has the form $\epsilon_n = \epsilon_{n;0} + \sum_{m=2}^{4} \underbrace{p_{n;m}(\Omega_1, \Omega_2)\beta_m}_{\text{phase factor}} + \mathcal{O}(\beta^2)$

 γ only appear here, in the form of cos3 γ , cos6 γ,\ldots

- $R_{\perp}^2 = \langle x^2 \rangle + \langle y^2 \rangle$ has the form $\delta d_{\perp}/d_{\perp} = \delta_d + \sum_{m=2}^{4} p_{0;m}(\Omega_1, \Omega_2)\beta_m + \mathcal{O}(\beta^2)$ $d_{\perp} \equiv 1/R_{\perp}$
- Two particle correlation

$$\langle \varepsilon_n^2 \rangle \approx \langle \varepsilon_{n;0}^2 \rangle + \sum_m \langle \boldsymbol{p}_{n;m} \boldsymbol{p}_{n;m}^* \rangle \beta_m^2 \qquad \left\langle \left(\frac{\delta d_\perp}{d_\perp} \right)^2 \right\rangle \approx \langle \delta_d^2 \rangle + \sum_m \langle p_{0;m}^2 \rangle \beta_m^2$$

- Consider also the influence of R_0 and a $\frac{
 ho_0}{1 + e^{(r-R_0(1+\sum_n eta_n Y_n^0(heta, \phi))/a_0}}$ $\langle \varepsilon_n^2
 angle pprox b_0 + b_1 \beta_2^2 + b_2 \beta_3^2 + b_3 (R_0 - R_{0, \text{ ref }}) + b_4 (a - a_{\text{ref }})$
- Linear response to relate to final state: $v_n \propto arepsilon_n \, rac{\delta[p_T]}{[p_T]} \propto rac{\delta d_\perp}{d_\perp}$

Parametric dependence

See 2106.08768

Isobar collisions as precision tool

- Unique running mode of RHIC and STAR to minimize systematics
 - 0.4% precision is achieved in ratio of many observables between two isobar systems → precision imaging tool

A key question for any HI observable O

$$\frac{O_{X+X}}{O_{Y+Y}} \stackrel{?}{=} 1 \qquad {}^{A_{X+A_{X}}} vs^{A_{Y+A_{Y}}}$$

Deviation from 1 must has its origin in the nuclear structure, which is reflected by the initial state and then survives the final state. A precision tool to study initial state and final state responses

Expectation

Species	β_2	β_3	a_0	R_0
Ru	0.162	0	$0.46~\mathrm{fm}$	$5.09~{\rm fm}$
Zr	0.06	0.20	$0.52~\mathrm{fm}$	$5.02~\mathrm{fm}$
difference	Δeta_2^2	Δeta_3^2	Δa_0	ΔR_0
	0.0226	-0.04	-0.06 fm	0.07 fm

$$\mathcal{O} \approx b_0 + b_1 \beta_2^2 + b_2 \beta_3^2 + b_3 (R_0 - R_{0,\text{ref}}) + b_4 (a - a_{\text{ref}})$$

$$R_{\mathcal{O}} \equiv \frac{\mathcal{O}_{\mathrm{Ru}}}{\mathcal{O}_{\mathrm{Zr}}} \approx 1 + c_1 \Delta \beta_2^2 + c_2 \Delta \beta_3^2 + c_3 \Delta R_0 + c_4 \Delta a$$

Valid for most single- and two-particle observable: v2,v3, p(N),< p_T >,< δp_T^2 >...

Glauber results: N_{ch} dep

Glauber results scaled

AMPT results: scaled

Scaling approach to nuclear structure

arXiv:2111.15559

14

$$\frac{\mathcal{O}_{\mathrm{Ru}}}{\mathcal{O}_{\mathrm{Zr}}} \approx 1 + c_1 \Delta \beta_2^2 + c_2 \Delta \beta_3^2 + c_3 \Delta R_0 + c_4 \Delta a$$

Valid for most single- and two-particle observable: v2,v3, p(N),< p_T >,< δp_T^2 >...

- Determine c_n once, and predict ratios for other parameter values.
- Constrain parameters via χ^2 analysis or Bayesian inference.
- Generalize to multi-particle observables…

Compare with isobar data

Use these ratios to probe shape and radial structure of nuclei.

Nuclear structure via v_n-ratio

 $\beta_{2Ru} \sim 0.16$ increase v₂, no influence on v₃ ratio

- $\beta_{3Zr} \sim 0.2$ decrease v₂ in mid-central, decrease v₃ ratio
- diffu. $\Delta a_0 = -0.06$ fm increase v_2 mid-central, no influe. on v_3 .

- v_{3,Ru} / v_{3,Zr} STAR Data

- ν_{3.Ru} / ν_{3.Zr} AMPT β

100

 $- v_{3,Ru} / v_{3,Zr} \text{ AMPT } \beta_{23}^{2,3} a_0^{\circ} R_0$

200

300

(ml<0.5)

N^{offline}

- Similar study by Haojie et.al.
- Radius $\Delta R_0 = 0.07$ fm only slightly affects v₂ and v₃ ratio.

(ml<0.5)

N^{offline}

21 0.2%

5

Nuclear structure via p(N_{ch})-ratio

• $\beta_{2Ru} \sim 0.16$ decrease ratio, increase after considering $\beta_{3Zr} \sim 0.2$

17

• The bump structure in non-central region mostly sensitive to differences in surface diffuseness Δa_0 and radius ΔR_0

Nuclear structure via p(N_{ch})-ratio

- $\beta_{2Ru} \sim 0.16$ decrease ratio, increase after considering $\beta_{3Zr} \sim 0.2$
- The bump structure in non-central region mostly sensitive to differences in surface diffuseness Δa_0 and radius ΔR_0
- All these trends are quantitatively reproduced by Glauber
 - Note the normalization is sensitive to trigger efficiency!!
 - See related study by Haojie et.al.

Triaxiality Y:
$$R(\theta, \phi) = R_0 \left(1 + \frac{\beta_2 [\cos \gamma Y_{2,0} + \sin \gamma Y_{2,2}]}{\sin \gamma Y_{2,2}} \right)$$

Influence of triaxiality on initial state

Skewness super sensitive to γ \odot

Described by

$$a' + (b' + c'\cos(3\gamma))\beta_2^3$$

variances insensitive to y

Only a function of β_2 in central

$$a' + b' \beta_2^2$$

Use variance to constrain β_2 , use skewness to constrain γ

(β_2, γ) diagram in heavy-ion collisions

The (β_2, γ) dependence in 0-1% $\langle \varepsilon_2^2 \rangle \approx [0.02 + \beta_2^2] \times 0.235$ $\rho = \frac{\langle \varepsilon_2^2 \delta d_\perp \rangle}{\langle \varepsilon_2^2 \rangle \sqrt{\langle (\delta d_\perp)^2 \rangle}}$ approximated by: $\langle \varepsilon_2^2 \delta d_\perp / d_\perp \rangle^2 \rangle \approx [0.005 - (0.07 + 1.36\cos(3\gamma))\beta_2^3] \times 10^{-2}$

Collision system scan to map out this trajectory: calib. coefficients with species with known β , γ , then predict for species of interest.

Triaxiality from $v_2^2 - p_T$ correlation at LHC ²²

B Bally, M Bender, G Giacalone, V Somà 2108.09578

$$R(\theta,\phi) = R_0 \left(1 + \frac{\beta_2}{\beta_2} \left[\cos \gamma Y_{2,0} + \sin \gamma Y_{2,2} \right] \right)$$

Clear sensitivity to the triaxiality of 129Xe.

Outlook

- Precision of hydrodynamics allow imaging of nuclear structure
- Great opportunity for possible (isobaric) system scans.
 - Larger systems have better statistical sensitivity e.g. 136Xe vs 136Ce
 - Small systems to disentangle geometry from initial momentum anisotropy
 - Profit from larger multiply/acceptance from LHC and low energy at NICA
 - Manifestation of nuclear structure are \sqrt{s} and rapidity dependent!
- Model study to explore the connection to nuclear structure and potential for heavy ion physics.

We're only limited by our imagination ...

Advertisement

INSTITUTE for NUCLEAR THEORY

"Intersection of nuclear structure and high-energy nuclear collisions"

January 23 – February 24, 2023

Giuliano Giacalone, Jiangyong Jia, Dean Lee, Matthew Luzum, Jaki Noronha-Hostler, Fuqiang Wang

Nuclear structure via <p_>

- AMPT underestimate response by x3, so trust trends only
- β_2,β_3 small impact in noncentral, but some increase in UCC
- Enhancement dominated by surface diffuseness
- Radius difference leads to stronger N_{ch} dependence
- Glauber model also describe the trends..

Nuclear structure via p_T fluctuations

- Glauber model is used by assuming $\frac{\delta[p_T]}{[p_T]} \propto \frac{\delta d_{\perp}}{d_{\perp}}$
- $\beta_{2Ru} \sim 0.16$ increase ratio while $\beta_{3Zr} \sim 0.2$ decrease it
- AMPT has wrong <pT> responses (see 2109.00604), but..

26

