Measurement of the Inclusive W/Z Production Cross-Sections at CMS and W/Z as a Luminometer

Jeremy Werner (Princeton University) On Behalf of the CMS Collaboration LHC Lumi Days Jan 13, 2011

Motivations and Observable

CMS

Motivation

- W and Z production are the first EWK
 processes studied at the LHC
- First benchmark for high-P_T electron
 and muon reconstruction and
 identification
- Precision tests of perturbative QCD and proton PDFs
- Estimator of the LHC luminosity
- <u>First physics luminometer</u>

Measurements

- Inclusive W/Z production cross sections
 - Measured separately for electrons and muons and combined
 - Directly compared with Standard Model NNLO predictions
 - Precision was limited by systematic
 uncertainty on the luminosity (11%)
- Ratio of W⁺/W⁻ and W/Z production cross sections
 - Insensitive to luminosity and other sources of error (4% precision)

Data Sample

- $\int Ldt = 2.88 \pm 0.32 \text{ pb}^{-1}$ of $\sqrt{S} = 7 \text{ TeV}$ pp collision data collected from Apr-Aug 2010
- 10 x larger data sample (47 pb-1) was delivered by LHC and is currently being

Thanks to LHC for continuously increasing the luminosity!

W/Z Cross Section Measurements

Signal W: Prompt, energetic, isolated lepton and significant MET **Background W**: QCD multi-jets, γ +jets (electrons), Drell-Yan, W $\rightarrow \tau v$, Z $\rightarrow \tau \tau$, tt, diboson **Signal & background yields:** by fitting MT (muons) or MET (electrons) distributions.

Signal Z: Two energetic, isolated leptons with M₁₁ around M₂
Background Z: Negligible QCD bkg, EWK and top bkg known precisely @ NLO
Signal yields: Cut & count (electrons), Simultaneous fit for yield & efficiencies (muons)

$$\sigma \cdot Br = \frac{N_{candidates} - N_{background}}{Acceptance \cdot Efficiency \cdot L}$$
From MC
(POWHEG)
$$\epsilon_{X} = \epsilon_{MC-X} \times \rho_{eff-X},$$
External input
11% uncert.
$$\rho_{eff-X} = \frac{\epsilon_{TNP-X}(data)}{\epsilon_{TNP-X}(MC)}$$

Offline Electron ID and Selection

Scinematics:

- $E_{T} > 20$ GeV and
 - |η| < 1.4442 (barrel) OR 1.566< |η| < 2.5 (endcap)
- High Level Trigger: Single e/ $\gamma E_{\tau} > 15$ GeV, Level-1: $E_{\tau} > 5$ GeV ($\cong 99\%$ efficient)
- Electron reconstruction & ID
 - Seeded from >5 GeV ECAL super-cluster
 - Specialized track reconstruction, incorporates bremsstrahlung
 - Cuts on ID variables:
 - track/cluster matching
 - shower shape, H/E
 - Conversion rejection:
 - require no missing hits in inner pixel layers
 - reject electrons having conversion partner track
- Isolation variables:
- Both W & Z: separate, relative isolations in tracker, ECAL, and HCAL

 $\epsilon_{\rm electron} \sim 83\%$

 $A_{w} \sim 57\% A_{z} \sim 43.5\%$

Muon ID Selection

Kinematics

- p_T > 20 GeV, |η| < 2.1</p>
- Trigger: Single muon p₁>9 GeV

Quality Requirements

- $\textcircled{2} \geq 1$ good muon chamber hit
- Both inside-out & outside-in Reconstruction
- Track matching with ≥2 segments in the muon stations
- $\chi^2/ndf < 10$ global fit
- Cosmic veto: impact parameter |dxy|<2 mm (w.r.t. the beam spot)</p>

Isolation

Combined relative isolation (R=0.3)

 $\epsilon_{muon} \sim 82\%$ A_w ~ 52% A_z ~40%

Efficiency Determination

CMS

Tag one leg of the Z and probe the other leg using invariant mass constraint

Tag Selection

Reconstructed electron with

- Super cluster within $|\eta|$ acceptance
- $E_{T} > 20 \text{ GeV}$
- Passing isolation and Id cuts
- Matched to the trigger electron candidate

Probe Selection

Super cluster or electron with
•E_T > 20 GeV, |η| in acceptance
• Fit the tag-probe invariant mass to get the signal yield.

SuperCluster \rightarrow electron \rightarrow Id + isolation selection \rightarrow HLT

 $(\boldsymbol{\varepsilon}_{\textit{offline}} \cdot \boldsymbol{\varepsilon}_{\textit{online}}) = (\boldsymbol{\varepsilon}_{\textit{reco}} \, \boldsymbol{\varepsilon}_{\textit{reco}}) (\boldsymbol{\varepsilon}_{\textit{id}} \, \boldsymbol{\varepsilon}_{\textit{id}}) \cdot (1 - (1 - \boldsymbol{\varepsilon}_{\textit{trg}})(1 - \boldsymbol{\varepsilon}_{\textit{trg}}))$

CMS

120

2.9 pb⁻¹ at √s = 7 TeV

100

M(e⁺e⁻) [GeV]

Electron

W/Z Signal Extraction

N = 677

Yield from counting

number of events / 2 GeV 00 00 001

60

(a)

data

 $Z \rightarrow e^+e^-$

80

W/Z Event Displays

Systematic Uncertainties: Electron Channels

Source	2.88 pb ⁻¹ (%) – published		36 pb ⁻¹ (%),– projected*	
	$W \rightarrow e \nu_e$	Z→ee	$W \rightarrow e \nu_e$	Z→ee
Reco & ID	3.9	5.9	2.5	3.8
P_{T} Scale and Resolution	2.0	0.6	2.0	0.6
MET Scale and Resolution	1.8	0	1.8	0
Background Subtraction/Modeling	1.3	0.1	0.4	0
PDF Uncertainty on Acceptance	0.8	1.1	0.8	1.1
Other Theoretical Uncertainties	1.3	1.3	1.3	1.3
Total Systematic	5.1	6.2	4.0	4.2
Statistical	0.6	3.8	0.2	1.1
Total	5.1	7.3	4.0	4.3

* All projections are those of the speaker/No projections are endorsed by CMS

Systematic Uncertainties: Muon Channels

Source	2.88 pb ⁻¹ (%) – published		36 pb ⁻¹ (%) – projected *	
	$W \rightarrow \mu \nu_{\mu}$	Ζ→μμ	$W \rightarrow \mu \nu_{\mu}$	Z→μμ
Reco & ID	1.5	0.5	1.0	0.3
P_{T} Scale and Resolution	0.3	0.2	0.3	0.2
MET Scale and Resolution	0.4	0	0.4	0
Background Subtraction/Modeling	2.0	1.0	0.6	0.3
PDF Uncertainty on Acceptance	1.1	1.2	1.1	1.2
Other Theoretical Uncertainties	1.4	1.6	1.4	1.6
Total Systematic	3.1	2.3	2.2	2.1
Statistical	0.7	3.1	0.2	0.9
Total	3.4	3.9	2.2	2.3

* All projections are those of the speaker/No projections are endorsed by CMS

Cross Section Results

Channel		$\sigma imes \mathcal{B}$ (nb)	NNLO (nb)
	eν	$10.04 \pm 0.10 \text{ (stat.)} \pm 0.52 \text{ (syst.)} \pm 1.10 \text{ (lumi.)}$	
W	μν	$9.92 \pm 0.09 (\text{stat.}) \pm 0.31 (\text{syst.}) \pm 1.09 (\text{lumi.})$	10.44 ± 0.52
	$\ell \nu$	$9.95 \pm 0.07 (\text{stat.}) \pm 0.28 (\text{syst.}) \pm 1.09 (\text{lumi.})$	
	$e^+\nu$	$5.93 \pm 0.07 (\text{stat.}) \pm 0.36 (\text{syst.}) \pm 0.65 (\text{lumi.})$	
W^+	$\mu^+\nu$	$5.84 \pm 0.07 (\text{stat.}) \pm 0.18 (\text{syst.}) \pm 0.64 (\text{lumi.})$	6.15 ± 0.29
	$\ell^+ \nu$	$5.86 \pm 0.06 (\text{stat.}) \pm 0.17 (\text{syst.}) \pm 0.64 (\text{lumi.})$	
	$e^-\bar{\nu}$	$4.14 \pm 0.06 (\text{stat.}) \pm 0.25 (\text{syst.}) \pm 0.45 (\text{lumi.})$	
W-	$\mu^- \bar{\nu}$	$4.08 \pm 0.06 (\text{stat.}) \pm 0.15 (\text{syst.}) \pm 0.45 (\text{lumi.})$	4.29 ± 0.23
	$\ell^- \bar{\nu}$	$4.09 \pm 0.05 (\text{stat.}) \pm 0.14 (\text{syst.}) \pm 0.45 (\text{lumi.})$	
	e ⁺ e ⁻	$0.960 \pm 0.037 (\text{stat.}) \pm 0.059 (\text{syst.}) \pm 0.106 (\text{lumi.})$	
Ζ	$\mu^+\mu^-$	$0.924 \pm 0.031 \text{ (stat.)} \pm 0.022 \text{ (syst.)} \pm 0.102 \text{ (lumi.)}$	0.972 ± 0.042
	$\ell^+\ell^-$	$0.931 \pm 0.026 (\text{stat.}) \pm 0.023 (\text{syst.}) \pm 0.102 (\text{lumi.})$	

W/Z production cross section measurements and theoretical calculations are consistent with each other *Can EWK bosons be used to measure the absolute luminosity* ?

Cross Section Results

1.2

Cross Section Results

Feasibility of W/Z as Luminometers

W/Z Bosons as Standard Candles for Luminosity

Can EWK bosons be used to measure the absolute luminosity ?

What is the systematic uncertainty on the L measurement using W/Z ? Is data stable in different periods ? What is the expected rate of the W/Z ?

VdM Scan Based CMS Lumi Measurement Vs $Z \rightarrow \ell \ell$ Based Lumi Measurement

Time	Systematics Summary				
	VdM Sca	n	$Z {\rightarrow} \ell \ell$		
	Source	Value (%)	Source	Value (%)	
Current	4⊕10(Beam Current)	11	4⊕4(σ NNLO)*	6	
Future	4⊕4(Beam Current)	5-6	2⊕4(σ NNLO)	4-5	

⇒ VdM Scans can be used to constrain the proton PDFs

* arXiv:1006.3766v4 – Adam, Halyo, Yost

W/Z for Luminosity – Sample Z \rightarrow ee Plots

We observe that the $Z \rightarrow ee$ event yield is stable Vs. HF based luminosity

W/Z for Luminosity – Sample $Z \rightarrow \mu \mu$ Plots

We observe that the $Z \rightarrow \mu\mu$ event yield is stable Vs. HF based luminosity

Stability of the data

Z Rates for Different Run Conditions at 3.5 TeV Beam Energy Per Lepton Channel

#BX	Lumi (cm ⁻² s ⁻¹)	Z Rate Hz (per channel)		Rate/day (per channel)		$\int_{1 \text{ day}} \mathbf{L} dt$ (pb ⁻¹)
		Prod	Reco	Prod	Reco	
43	3.8×10 ²⁹	4×10-4	1×10-4	30	10	3×10 ⁻²
156	5.6×10 ³¹	0.06	0.02	5×10 ³	2×10 ³	5
930	7×10 ³²	0.7	0.2	6×10 ⁴	2×10 ⁴	60
2808	2.8×10 ³³	3	1	3×10 ⁵	1×10 ⁵	200
2808	1×10 ³⁴	10	3	9×10 ⁵	2×10 ⁵	900

Collisions with 4TeV beam energies have 17% larger cross sections. All numbers ~10 times higher for W bosons

Summary

- CMS has achieved ~ 4% precision tests of electroweak physics.
 - Electrons, muons, and missing energy are well-calibrated detector objects ready for precision analysis
 - Uncertainty on the W+/W- cross-section ratio is becoming comparable to the theoretical uncertainty
- •W/Z could be used already to calibrate the relative luminosity
 - ~2 hours at 7x10³² cm⁻²s⁻¹ we can achieve similar systematic uncertainty as the VdM scan by combining electron, muon channels
- Extraordinary performance by detector operations, computing, detector simulation, and physics objects groups
- Last but not least many thanks to LHC for making it possible