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Introduction
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q The need of rad-tolerant electronic devices is wide
q Space applications
q Avionics
q Nuclear plants control instrumentation
q High energy physics
q Automotive
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Introduction
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q The most relevant particle basic mechanisms in Si are related to
q Photons
q Heavy Ions
q Protons
q Neutrons

Silicon Silicon Silicon Silicon

eh

eh
eh

h
h
h
h

h
h
h
h

e
e ee e

e
e

e e
e

e

eh

n

h

eh

eh

h
h

h e e

Photon
Heavy Ionsi

p p

p h
h

e
e eh
hh

n n

n

p

Protons Neutrons

Small density e-h Large density e-h Small density for direct ionization. 
High density from HI from nuc interation with Si nuclei

Introduction



December, 5 2022 – SERESSA 2022 – CERN, Geneve, Switzerland 6

q The ion interacts with the electrons of the surrounding 
medium exciting or ionizing molecules

q The ion energy may create:
q«clusters» of other ionized or excited molecules
q«delta ray» or blobs 
q«high energy delta ray»: secondary trajectories with 

possibly large mass

Clusters

Blobs

High energy 
Delta Ray

Introduction
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Radiation effects on CMOS devices
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q The Ion range longitudinal energy distribution can be 
modeled as a probabilistic density 

q The range with respect to the center (0 Ang) may represent 
the probability of side phenomena
q Clusters 
q Blobs
q High Energy Delta Ray
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Radiation effects on CMOS devices
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q A particle ray crosses multiple layers
q Ionization Energy loss per layer is related to the type of 

composite Si material

FP Poly-Si

Inter-Poly SiO2
Si3N4

Inter-Poly SiO2

FG2 Poly-Si

Tunnel

A Floating Gate cross section and the Energy Loss (eV/Ang) considering Xe ion at 62.5 MeV

[IEEE ETS 2018]
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Radiation effects on CMOS devices
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q Example: A MUX2_X1 logic cell at 28nm technology

[GDS 3D View] [GDS 2D view]
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SEE effects in VLSI
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q Single Event Effects (SEEs) depend (not only) on
q the type of radiation
q the geometry
q type and order of traversed layers

Start [x,y,z=top]

End [x,y,z=bottom]
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Radiation effects on CMOS devices
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Cube ID [#] Layer ID [#]
Energy 

Distribution/Cube [%] Energy KeV/Cube
Maximal Expected 

Peak [V]
19 8 10,1 0,26 1,20E-04
27 6 6,5 7,93 9,00E-06
35 11 33,7 7,8 5,80E-03
36 11 19,3 0,66 4,90E-04

111 16 11,6 4,94 2,16E-03

x[Å]
y[Å]

z[Å]

A 3-D Simulation-Based Approach to Analyze Heavy Ions-Induced SET on Digital Circuits [IEEE Trans. on Nuclear Science 67 (9), 2034-2041]
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Radiation effects on CMOS devices
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[ MUX21 at 65nm ]
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Radiation effects on CMOS devices
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SEE effects in ASIC
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q A radiation particle can generate a Single Event Upset (SEU) if affecting a 
memory element: Data FF or RAM bit-flip

Single Event Upsets (SEUs) 
q A radiation particle can generate a Single Event Transient (SET) if affecting a 

logic element: combinational standard cell.

0 1 0 0
0 0 0 0
0 0 1 1

0 1 0 0
0 0 0 1
0 0 1 1

An SET is critical if sampled: higher is 
the sampling frequency, higher is the 

probability the error is propagated
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q A radiation particle can generate a Single Event Latch-up (SEL) if affecting any 
element of the ASIC in particular in case:
qElectrical transient on I/O lines
qHigh temperature
qBad sequencing of power bias

qSELs are hard SEU effects
qThe supplied current should be monitored and shutting off power and I/Os if a current 

bump is detected.

Time

Su
pp

ly
 C

ur
re

nt

SEE effects in ASIC
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Field Programmable Gate Array
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q An FPGA is a user-programmable matrix of logic blocks with programmable 
interconnections that can implement any logic function or algorithm

Configurable Logic Block (CLB)
on coordinates (X,Y)

Configuration Map

L
U
T

L
U
T

P
I
P

PIP

PIP
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q Considering soft SEE, an SEU might result in data corruption, transient 
disturbance, high current conditions

q Depending on the FPGA configuration memory technology, it is possible to 
distinguish
q SEU in User Memory (SRAM and Flash)
q SEU in Configuration Memory (SRAM)

q Logic 
q Routing

q SET in the Look Up Tables (LUTs) or Logic Element (SRAM and Flash)

SEE effects in FPGA
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SEU effects in SRAM-based FPGA
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q SEU within the configuration memory
q FPGA resource not affected : NO ERROR
q FPGA resource affected : ERROR

q SEU induced architectural modification
q Logic Element: LUT, MUX, FF Configuration
q Interconnections: Switchbox
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§ Several tools focus on the identification of essential and 
critical bits

SEU effects on FPGA Configuration Memory

0 1 0 0 0 0

1 0 0 0 0 0

1 1 0 0 0 0

0 0 0 0 1 0

0 1 0 1 0 0

0 0 0 0 0 0
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§ Several tools focus on the identification of essential and 
critical bits

0 1 0 0 0 0

1 0 0 0 0 0

1 1 0 0 0 0

0 0 0 0 1 0

0 1 0 1 0 0

0 0 0 0 0 0

SEU effects on FPGA Configuration Memory



21

§ Identify single point of failures of TMR circuits
§ Critical bits are used to compute the FPGA circuit error cross-

section

Identification of Critical Bits

0 1 0 0 0 0

1 0 0 0 0 0

1 1 0 0 0 0

0 0 0 0 1 0

0 1 0 1 0 0

0 0 0 0 0 0
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4-LUT
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SEE effects in FPGA



SEE effects in FPGA

0 1 0 0 0 0
* 0 0 0 0 0
1 1 0 0 0 0
0 0 0 0 1 0
0 1 0 1 0 0
0 0 0 0 0 0

1à0
An open 
circuit is 
created

§ SEUs may cause structural changes in the circuit implemented 
on the FPGA

§ TMR techniques suffer cross-domain failure induced by single 
and multiple bitflips within the configuration memory
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qOriginal configuration memory data, also called, bitstream
qAn architectural configuration corresponds to an unique bitstream

0 1 0 0 0 0

1 0 0 0 0 0

1 1 0 0 0 0

0 0 0 0 1 0

0 1 0 1 0 0

0 0 0 0 0 0

SEU effects in SRAM-based FPGA
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0 1 0 0 0 0

* 0 0 0 0 0

1 1 0 0 0 0

0 0 0 0 1 0

0 1 0 1 0 0

0 0 0 0 0 0

1à0
An open 
circuit is 
created

SEU effects in SRAM-based FPGA
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0 1 0 0 0 0

1 0 * 0 0 0

1 1 0 0 0 0

0 0 0 0 1 0

0 1 0 1 0 0

0 0 0 0 0 0

0à1
A short 
circuit is 
created

SEU effects in SRAM-based FPGA
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0 1 0 0 0 0

1 0 * 0 0 0

1 1 0 0 0 *

0 0 0 0 1 0

0 1 0 1 0 0

0 0 0 0 0 0

0à1 A short circuit 
is created
and other
effects are 
inserted

0à1

SEU effects in SRAM-based FPGA
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qConfiguration memory frames are interleaved with layout
qDon’t forget layout geometry!
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qA laser-induced SEUs on the configuration memory of a Xilinx SRAM-based
FPGA device (Virtex-II)
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qA radiation particle hitting the geometry of a LUT/Logic Element may create a 
Single Event Transient pulse

Logic Element of RTG4 (Microchip / 
Microsemi)

Versatile of ProASIC3 (Actel)

FPGA array Examples of transient pulses generated 
by particle incident

LUT-based (Xilinx and Altera)

4-LU
T

SET effects in FPGAs
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C
om

putational R
egister (operand)

qSET may propagate through multiple circuit paths
qGeneration of Multiple SEUs on registers

Multiple SEUsSET propagationSET generation

SET effects in SRAM-based FPGA
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qDuring propagation SET may have a modified width and amplitude
qPropagation of SET pulse from a divergence point to different destination points

SET (A)

Path (B)

Path (A)

SET (B)

Divergence 
Point

SET effects in SRAM-based FPGA
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Divergence 
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Delay (B)

Delay (A)

Convergence 
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SET effects in SRAM-based FPGA
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SE
T 
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id

th

Delta Delay

Delay (C) – Delay 
(B)

Case (I)

Delay (C) – Delay 
(B)

Case (II)

Delay (C) – Delay 
(B)

Case (III)

Case (III) Case (II) Case (I)

qThe convergence SET (C-SET) phenomena

[RADECS18]

SET Guard Gate 
Filtering

SET effects in SRAM-based FPGA
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qHardening techniques are applied:
qlayout: modifying the device geometrical layout
qarchitecture: modifying one or more module of the architecture
qdesign: improve the HW/SW design rule to be rad-tolerant 

qSome SEE mitigation techniques on ASIC have been consolidate over the time:
qLayout (DICE)
qArchitecture (EDA)
qDesign (TMR)

SEE mitigation techniques
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SEE mitigation techniques: layout

[VLSISoC21]

• The hierarchical blocks of the 
memory bank are based on six main 
logic cells:
– Data Flip-Flop (DFF)
– Master and Slave Flip-Flip (MS-Flop)
– Write Drivers
– Three states buffer
– Sense Amplifier 
– 6 Transistors RAM cell

• Hierarchical decoder and control logic
– outside of the memory bank

• The memory bank cells have been 
analyzed with 10,000 particles per 
each heavy ions using the 3D 
simulation approach 

bitcell_array

hierachical_ decoder

control_logic

Colum
nm

ux_array

sense_am
p_array

w
rite_driver_array

m
sf_data_in

tri_gate_array

Memory Bank



December, 5 2022 – SERESSA 2022 – CERN, Geneve, Switzerland
37

SEE mitigation techniques: layout

• The SEE cross-section may vary 
from 5.44·10-14 up to 5.46·10-13

• Distribution of the current pulses 
observing that 96.62% of the 
radiation particle 
– over the 40,000 particles are 

generating current pulse below 0.5 µA 
• Maximal peak of 17.4 µA
• DFFs and the MS-Flops are the 

most sensitive cells 
• 6T-RAM cell is the cell with the 

lowest cross-section

(a) (b)

MN3MN4

MN1MN2

MP5MP6

1.
54

 μ
m

0.88 μm

[μA]

[VLSISoC21]
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SEE mitigation techniques: layout

[VLSISoC21]

• The main purpose of our approach is 
to insert two redundant transistors 
(DUP) in parallel to the original PMOS 
transistors
– A T-structure added on the top of the 

original transistor 
• The radiation particle charge injected 

by those particles directly crossing 
MP5 and MP6 is distributed
– The overall Qcrit margins are increased 

• The modified the 6T-SRAM original 
layout available regions without 
introducing area overhead to the cell
– MP6 and MP5 transistors have enough 

physical space to introduce to redundant 
transistors

DUPM6 DUPM5

MP5MP6



December, 5 2022 – SERESSA 2022 – CERN, Geneve, Switzerland
39

SEE mitigation techniques: layout

[VLSISoC21]

SRAM
Configuration

SEE Threshold Current Pulse 
[µA]

Q=1  Qn=0 Q=0  Qn=1
6T-Original 0.93 0.46

8T-Proposed 3.83 2.12
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1,28E-10
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8TSRAM

6TSRAM

• 8Kb memory bank with 
the 8T-SRAM cell

• The developed mitigated 
8T-SRAM is 6 times more 
robust of the original 6T-
SRAM cell
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qError Detection and Correction: EDAC
qAn error-correcting code (ECC) or forward error correction (FEC) is a process to 

add redundant data (parity data) to a message
qThe error can be recovered by a receiver even when a number of errors are 

introduced
qApplied to RAM modules

ECC
Encode RAM ECC

Decode

Hsiao, M.Y. "A Class of Optimal Minimum Odd-Weight-Column SEC-DED Codes".
IBM Journal of Research and Development
14, no. 4 (July 1970). Available from World Wide Web:
Lin, Shu and Daniel J. Costello, Jr.  Error Control Coding: Fundamentals and Applications. 
New Jersey: Prentice Hall, 1983.

SEE mitigation techniques: architecture
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M0

M1

M2

VO
TE

R

Triple
Modular
Redundancy

Masked error

[Courtesy of A. Menicucci]

W. G. Brown, J. Tierney and R. Wasserman, “Improvement of Electronic- Computer  Reliability  Through  the Use of Redundancy.” IRE 
Trans. on 2. G. Buzzell, W. Nutting and R. Wasserman, “Majority Gate Logic Improves Elec. Comp., EC-IO, No. 3, 407  (1961). 

SEE mitigation techniques: architecture
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SET mitigation techniques: clock skew
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[From European Space Agency presentation]
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SET mitigation techniques: guard gate
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SET Guard Gate Filtering

qFiltering transient pulses by INV delay at the input of a 
guard gate logic gate structure  

[Mongkolkachit, P., et. al., IEEE Transactions on Materials Reliability, 2003]
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q A new Radiation-oriented CAD tool paradigm focusing on radiation analysis and 
mitigation

Behavioral 
Domain

Structural
Domain

Physical 
Domain

Transistor 
Design

Transistor Transistor 
Functions 

Transistor 
Layout 

- Cell Layout

- Block Layout
- Chips, Floorplans
- Boards, System partitions

Gate, Flip-Flops -

RAM, Registers, ALUs -
- Flow charts

- Boolean Expression

- System behavior

Layout 
Design

Cell design

RTL design

The need of CAD tools
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Radiation Sensitivity Tools
• Radiation analysis tool simulates the effects of highly 

charged particles traversing the silicon junction
– Calculate the generated eV transmitted to the Silicon
– Provide the current profile for each particle strike

OpenRAM 
Cell Library

TRIM Radiation 
Profile

3D RADIATION
ANALYSIS

Current 
Injection 
Pulses

SEE Static 
Cross-section

FreePDK
Layers

Composite

Physical 
Layout 

Description
Energy Loss 

Profile

[IEEE TNS 2019]
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qConfiguration Memory Tool (COMET) for SRAM-based FPGAs
qA CAD tool to link the lowest level beween Physical Resource and Configuration 

memory layers
qCompatible with Xilinx 7-series

.bit

Parameters

FORMAT SEQUENTIAL BITSTREAM IN FRAMES

FORMAT FRAMES IN CLOCK REGIONS MATRICES

ORGANIZE CLOCK REGIONS MATRICES IN THE CORRECT ORDER

Configuration
Memory
Image

CONFIGURATION 
MEMORY MATRIX

.bit*

HIGHLIGHT SUBSECTION OF TARGET COORDINATES

COMPARE CURRENT BITSTREAM WHIT A NEW ONE

INJECT # BITFLIPS RANDOMLY OR IN TARGET COORDINATES

Visualization

Analysis

Manipulation

[x*, y*, N]

.bit

Coordinates

# & R/C

COMET

[ACM ARCS CompSPACE 2018 ]

CAD tools for SEE analysis
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CAD tools for SEE analysis
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[Microelectronics Reliability 2022]



December, 5 2022 – SERESSA 2022 – CERN, Geneve, Switzerland
48

qVERI-Place is a CAD tool for analyze redundant (TMR-like) implementation on 
SRAM-based FPGAs

qIdentification of all the architecturally relevant sensitive bits
qIf affected, these configuration memory bits may change the physical structure of 

the circuit and generate an output error 

Progressive accumulation of bitflips (SEUs)

Ap
pl

ic
at

io
n 

Er
ro

r
Pr
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y

1  2  3  4  5  6  7  8  9  10  11 12 

Desired Application Error 
Probability (Mission

Profile)

Maximal number of 
Accumulated SEUs

[RADECS22]

SEE mitigation techniques: architecture
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Experimental setup for SEU mitigation evaluation

TMR design LUT 
[#]

PIP 
[#]

(a) Original 11,572 13,590
(b) Isolated Domains 11,578 14,642
(c) Resource Sharing 11,572 24,948

§ AMD-Xilinx Zynq XC7Z020 28nm CMOS SRAM-based FPGAs
§ The developed tool has been applied to a TMR benchmark
§ Three different alternative layouts
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Experimental results for SEU mitigation evaluation
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Predicted vs Measured Reliability
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CAD tools for the SET analysis
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qA Single Event Transient Analysis and Mitigation tool (SETA) for SET analysis and 
mitigation on Flash-based FPGAs

[Best CAD tool at the 15th International Conference on Synthesis, Modeling, Analysis
and Simulation Methods and Applications to Circuit Design, IEEE SMACD 2018]
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[RADECS19]

3D LUT Radiation Effects
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[RADECS19]

3D LUT Radiation Effects



December, 5 2022 – SERESSA 2022 – CERN, Geneve, Switzerland
57

[RADECS19]

3D LUT Radiation Effects
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qSingle Event Transient (SET) cross-section [cm2] for static radiation analysis (MUX2 
and CM) 

qComputing the dynamic analysis for five LUT configuration (AND, OR, XOR, XNOR 
and INV). 

[RADECS19]

3D LUT Radiation Effects
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qSelective resizing of vulnerable transistors

[RADECS20]

3D LUT Radiation Effects
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[RADECS20]

3D LUT Radiation Effects
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[IEEEDATE21]

q In-Silicon Radiation Sensor
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qConsolidated effects but new radiation mechanisms for ultra nanometer 
technologies

qTraditional mitigation techniques are suitable but require automatized tools for 
analysis and mitigation

qCAD tools for 3D devices 
qIndustrial and radiation test experiences are of fundamental support in CAD 

tool development

Conclusions
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Routing Switch architectural model
§ The model is based on the routing organization of AMD-Xilinx 

Series-7 SRAM-based FPGAs
§ Essential to model the SEU-induced architectural propagation

– memory bit coding is associated the relative group of PIPs
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Routing Switch architectural model

Zynq-7020 Configuration Map
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FPGA Architectural Model

§ The configuration memory bitmap models all routing PIPs
– Direct PIPs
– Decoded PIPs
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Routing Switch architectural model

Zynq-7020 Configuration Map

PIP a->b

PIP c->d
PIP c->e

1 1

1 1 1 1

a

b

c
d

e

0 11

Decoded
buffer

L
U
T

L
U
T

0

1

1 1

1

1 1

1 1decoded

a->b

c->d

c->e

Slice
Slice

Slice
Slice

FPGA Architectural Model

§ The configuration memory bitmap models all routing PIPs
– Direct PIPs
– Decoded PIPs



67

Reliability Prediction Tool
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Reliability Prediction Tool

§ Monte Carlo analysis with a limit up to 100,000 iterations per 
SEU combination

§ Bit Classification criterias
– Accumulated: bitflips accumulated in the virtual configuration memory
– Miss: number of upsets that did not hit any programmed resources
– Error: bitflips causing an error propagated to the output
– Filtered: bitflips that, even if there are related to a used resource, they

did not propagate the error until an output cell
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Back end on Reliability Prediction Tool
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