SERESSA 2022

5th to 9th of December at CERN, Geneva

The Phoenix GPS Receiver - A Practical Example of the Successful Application of a COTS-Based Navigation Sensor in Different Space Missions

Markus Markgraf, DLR e.V (German Aerospace Center)

Outline

- 1. Background and Motivation
- 2. Phoenix GPS Receiver
- 3. Qualification and Verification Program
 - Performance Assessment
 - Environmental Qualification
 - Radiation Effects Testing
- 4. Flight Heritage
- 5. Proba-2 Mission
 - Overview and GPS System Architecture
 - Flight Result
 - Radiation Effects
- 6. Summary and Conclusions

1. Background and Motivation

Background and Motivation

- GPS has become a "standard" sensor in almost every space mission over the last two decades
- Fully space-qualified GNSS receivers are expansive (>1M€) unaffordable for many projects due to limited budgets
- COTS-based GPS receivers are typically the only alternative for such missions
- However, use of COTS-based technology requires thorough testing and good understanding of reliability and failure mechanisms
- DLR designs, builds and operates satellites and sounding rockets
- Strong in-house need for affordable GPS/GNSS technology
- DLR's Space Flight Technology group commenced to explore, develop, and test COTS-based GPS receiver in the late 1990s.
- Phoenix GPS receiver for space missions as one outcome of these works

2. Phoenix GPS Receiver

Hardware Platform

12 channel L1 single-frequency receiver for highdynamics applications

Entirely based on COTS technology

Commercial H/W platform (SigTec MG5001)

- Approx. 70 x 47 x 11 mm3
- Mass < 25 g
- Power Consumption ~0.7-0.9 W
- Only minor modifications necessary for use in rockets and LEO satellites applications(battery, connectors)
- Additional I/F electronic required (Power and signal conditioning, latch-up protection, etc.)

Top side of the Phoenix GPS receiver board

Self-contained GPS unit developed for Eu:CROPIS satellite mission

Receiver Firmware

Originates from sample source code of an earlier available GPS development kit

Received extensive revision and enhancements

Added Carrier tracking

- Carrier phase smoothing (reduced position noise)
- Range-rate from carrier phase (accurate velocity)

Advanced tracking loops for robust tracking under high signal dynamics

□ Flexible TM/TC interface

□Integer second synchronization and 1PPS signal

□ Hot start capability (30s)

- Non-volatile memory and real-time clock
- Aiding with two-line elements

Available in two versions:

- Phoenix-HD for high dynamic applications (launchers and rockets)
- Phoenix-S for LEO satellites

Block diagram of the FLL-assisted-PLL

3.1 Performance Assessment

Simulator Testing

- Hardware-in-the-loop test bed
- Use of a GNSS signal simulator
- Simulation of representative R/F signals
- Assessment of:
 - Acquisition and tracking performance
 - Navigation accuracy
 - Raw data accuracy

GNSS signal simulator test setup

SERESSA 2022

3.2 Environmental Qualification

Vibration & Shock

- Tests conducted for wide range of load profiles (Soyuz, Ariane-5, Vega...)
- Both, on sub-system and system level
- Testing in operational mode (HiL)
- Stimulation of receiver with signals from a GNSS signal simulator or roof top antenna
- Study of impact of vibration onto tracking and navigation behavior and performance

OCAM-G Payload mounted to the shaker table at IABG, Germany.

Sounding rocket payload during a vibration test at Airbus Ottobrunn, Germany

Thermal-Vacuum

Thermal-vacuum Test chamber at GSOC

- Test conducted at DLR's own test facilities in Oberpfaffenhofen in close accord with ECSS testing standards
- Atmospheric pressure as well as vacuum conditions
- Thermal cycling in operational and passive mode
- Temperature range:
 - -30° to +70° operational
 - -40° and +80° non-operational (storage)
- Increase of power consumption at higher temperatures (ca. +8%/100K)
- No impact on navigation performance found

Phoenix receiver with attached thermal probes

Example for one conducted thermal cycle

3.3 Radiation Effects Testing

Total Ionizing Dose

- Total Ionizing Dose (TID) test using Co-60 source
- Conducted at Fraunhofer Institute for Technological Trend Analysis (FhG/INT), Euskirchen, Germany
- Hardware-in-the-loop test setup
- Open-sky GPS signals via roof-top antenna
- Reference receiver operated outside test chamber
- Comparison of navigation solution as well as raw data

Total Ionizing Dose (cont'd)

Dose rate 0.25 – 5 rad/s

- Gradual increase of power consumption (25-40%)
- Receiver break-down at 14-17 krad
- Osc. frequency shift -1.1ppm/krad
- Increased risk of cycle slips (oscillator?)
- Observed effects are dose rate dependent
- Self-healing after end of exposure

40% 30% 20% **Current Increase** 10% 0% -10% Phoenix #3 (1 rad/s) -20% --- Phoenix #2 (5 rad/s) Phoenix #1 (0.25 rad/s) -30% Orion #19 + I/F #6 (0.27/1.0 rad/s) -40% - Orion #20 (5 rad/s) -50% 0 12 16 18 20 14 TID [krad]

50%

Current increase as function of the accumulated radiation dose

Test setup with DUT and Co-60 source

Single Event Effect

SEE proton characterization performed:

- at the JULIC proton cyclotron of the Research Center Jülich, Germany (together with Fraunhofer-INT)
- at the Paul Scherrer Institute (PSI) in Villigen, Switzerland (together with ESA/ESTEC)
- □ Key objectives of the test campaign were:
 - Verify anomalies observed in previous satellite missions
 - Identify sensitive component(s)
 - Characterize nature of the anomalies and assess usability of the receiver for future space missions
- All tests performed on board level.
- Test boards connected to GPS signal simulator

Test setup used for the proton radiation tests conducted with the Phoenix GPS receiver

Single Event Effect (Cont'd)

- Two different versions of Phoenix boards tested
 - Only difference in size of SRAM chip
- Broad beam irradiation of entire board
- □ Narrow beam irradiation of different regions
- □ Receiver generally sensitive to SELs
- Latch-ups were found to be non-destructive
- SRAM chip identified as radiation-critical component
- SEL rate estimation performed for Proba-2 orbit (near-circular, sun-synchronous, 725 km altitude)
 - 0.01 /device/day for "standard" SRAM
 - 0.1 /device/day for extended SRAM
- No SEUs observed (probably due to "masking" by SELs)

Radiation chamber at the Paul Scherrer Institute, Villigen, Switzerland

4. Flight Heritage

Phoenix GPS – Flight Heritage

Non-exhaustive list of missions and projects using Phoenix GPS receiver

LEO Satellites		
Mission/Project	Launch Date	Purpose
Proba-2 (ESA)	11/2009 - today	orbit determination, flight dynamic services, time synchronization
Proba-V (ESA)	5/2013 - today	orbit determination, flight dynamic services, time synchronization
Prisma (SSC)	06/2010 – (status unknown)	orbit determination, time synchronization, autonomous orbit and formation control
TET-1 (DLR)	07/2012 - 2019	orbit determination, flight dynamic services, time synchronization
BIROS/BEESAT-4 (DLR & TU Berlin)	06/2016 - 2019	orbit determination, flight dynamic services, time synchronization, formation flying
EuCROPIS (DLR)	12/2018 - 2020	orbit determination, flight dynamic services, time synchronization

Sounding Rockets			
Mission/Project	Launch Date	Purpose	
Texus 39 — 56 (ESA/DLR)	2001 - today	Flight safety, recovery, trajectory determination, time-synchronization	
Maxus 4 – 9 (ESA)	2001 - 2017	Flight safety, recovery, trajectory determination, time-synchronization, GNC	
Rexus 4 – 26 (DLR/SSC)	2008 - today	Flight safety, recovery, trajectory determination, time-synchronization	
Shefex-I & -II (DLR)	2005 & 2012	Flight safety, recovery, trajectory determination, time-synchronization, GNC	
WADIS 1 & 2 (DLR)	2013 & 2015	Flight safety, recovery, trajectory determination, time-synchronization, experiment support	
MaxiDusty 1 & 2 (DLR/ASC)	2016	Flight safety, recovery, trajectory determination, time-synchronization (flight validation of a new rocket motor)	
Launch Vehicles			
Ariane-V (VA 219) (ESA & OHB)	2014	Technology demonstration, Flight experiment, trajectory determination	

SERESSA 2022

5. Proba-2 LEO Mission

Mission Outline

Second spacecraft in ESA's **PR**oject for **OnB**oard **A**utonomy

- Micro-satellite platform for technology demonstration and science:
 - Scientific goals: Sun observation and study of space environment
 - Novel technology components: Sun and star sensors, two GPS receivers, propulsion and power system components, data handling system, etc...
- Built by QinetiQ Space Technology
- Launched on 2nd Nov. 2009 01:50 UTC from Plesetsk onboard Rockot
- Sun-synchronous dusk-dawn orbit at approx. 725 km altitude

GPS Sub-system Architecture

SERESSA 2022

- Cold redundant GPS system
- Phoenix receivers integrated in AOCS Interface boxes
 - Power conditioning
 - Line drivers
 - Latch-up protection
- Common antenna, but independent LNAs
- Independent measurements from prototype Topstar3000G2 receiver (by Alcatel)
- Laser Retro Reflector

22

Flights Results

Acquisition and Tracking

- Typical Times-To-First-Fix in standard Sun pointing attitude mode :
 - Cold-start: 5..15 min
 - Assisted boot: < 2 min
- On average 9 GPS satellites tracked
- 3D rms position accuracy of ~2 m (with peak errors up to 10m)

Navigation Accuracy

- **3D** rms navigation accuracy of about
 - 2 m pos
 - 5 cm/s vel
- Peak errors up to 10m

Radiation Effects

Proba-2 latch-up events 2009-2022

- Numerous SELs in almost regular intervals from beginning of operation
- In average one to two latch-up events every 48 hours
- Majority of latch-ups can be associated with the South Atlantic Anomaly
- Remaining events occurred at high latitudes in the North and South Pole region
- Also SEUs observed but less frequent
- Both receivers onboard Proba-2 still performing nominal (~13 years in orbit!!)

Radiation Effects (cont'd)

Hours elapsed since last latch-up

Statistical analysis of the times between two subsequent latch-up events (2009-2019).

6. Summary and Conclusions

Summary and Conclusions

- The Phoenix GPS receiver has been developed as an affordable alternative to fully space qualified GPS/GNSS receivers.
- A test and qualification program has been conducted with the receiver to ensure a proper operation in space.
- During these tests a relatively high sensitivity to space radiation has been detected (mainly SEL).
- Latch-ups were found to be entirely non-destructive.
- Receiver successfully flying in orbit onboard numerous LEO satellite (13 years aboard PROBA-2!!)
- This example demonstrates that COTS electronics <u>can</u> be an alternative to expensive spacequalified hardware.
- However, environmental testing is essential!
- One should not underestimate the costs and effort associated with the qualification of a COTS system for space use.

SERESSA 2022