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Pico-Satellite Bus UWE
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New Approaches for NewSpace

8Advanced FDIR and Redundancy Concepts with COTS in Space – Stephan Busch, Fraunhofer EMI

Innovation
▪ state-of-the-art technology for new applications

▪ high performance, high efficiency

Iteration
▪ agile system development with rapid 

design, integration and test cycles

Automation
▪ for design, test, and operation of many satellites

image credits: SpaceX
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The chance of COTS in NewSpace
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traffic jam

traffic accident

potential hazard

tracked item 
#6653E6

Onboard Autonomy
▪ onboard AI, deep learning based image 

classification and segmentation
▪ real-time information extraction

Advanced FDIR
▪ onboard AI for advanced sensor data analysis 

and anomaly detection

Payload-in-the-loop
▪ Optimization of image acquisition (e.g. pointing)
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The challenge for COTS in LEO

❑ total ionizing dose (TID)
▪ electronics, solar cells, optics

❑single event effects (SEE)
▪ transients, upsets, latchups, burnouts
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electromagnetic radiation
e.g. IR, VIS, UV, X

galactic cosmic rays (GCR)

corpuscular radiation
solar wind: i.e. protons

solar particle events (SPE)

high energy charged 
particles trapped in 

magnetosphere

Earth magnetic field
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Advanced FDIR and Redundancy Concepts with COTS

» How to provide a 

reasonable level of robustness

for modern system architectures based on 

commercial-of-the-shelf hardware

to allow dependable operation in the

hazardous space environment «  
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Mitigation Concepts
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Robustness

Reasonable level of robustness for a small satellite
▪ most failures are not inherently destructive and can be recovered 

e.g. by power cycles, complex recovery procedures by ground control
▪ at least the key components have to be implemented robustly to enable recovery

i.e. OBC + EPS + COM
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the ability of a system to…
1. accomplish its designated operations during intended lifetime under 

normal conditions (reliable)
2. continue at least reduced operations in the event of the failure of some of its 

components (fault-tolerant)

robustness = reliability + fault-tolerance
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General Concepts of Radiation Effects Mitigation

Hardware
▪ shielding

▪ non-sensitive operation modes

▪ component selection

▪ device redundancy

▪ protection circuits
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robustness of COTS based systems by design hard- and software design can be achieved 
by avoidance, conservative design, or redundancy and recovery

radiation effects mitigation for COTS based designs

Software
▪ information-redundancy

▪ time-redundancy

▪ code-redundancy

▪ reduced operation duty cycle

▪ fault detection, isolation, and 
recovery mechanisms (FDIR)

[Maurer et. al., 2008]
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Hardware: Effect Reduction

❑Shielding of critical components
▪ protons: light materials, e.g. PE (Polyethylene)

▪ electrons: high-Z materials, e.g. Ta (Tantal)

❑Non-sensitive operation modes
▪ partial power down of unused hardware

exploiting reduced duty cycle

▪ low clock frequency reduces probability for SET
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Shielding of Protons

Shielding of Electrons

[Höffgen, 2021]
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Hardware: Component Selection

❑Radiation tolerant COTS
▪ bipolar integrated circuits

▪ MRAM (Magnetoresistive RAM), FRAM (Ferroelectric RAM), Flash

❑De-Rating
▪ conservative component selection, large margin for relevant specification parameters

❑Target minimization: reduced surface of vulnerability
▪ prefer reduced complexity (i.e. sensitive nodes)
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Hardware: Tolerant System Design

❑Device redundancy
▪ parallel loosely coupled operation

e.g. parallel switches, diodes, LDOs

▪ voting circuits 
e.g. TMR (triple modular redundancy)

❑Protection circuits 
▪ damage protection, 

e.g. current limiter, latchup protection

▪ watchdog timer recovery
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Latchup Protection
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Triple redundancy with single voter
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Hardware: Tolerant System Design
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Software: Redundancy

❑ Information redundancy
▪ state verification

e.g. periodical check of register settings
▪ error detection and correction (EDAC) codes 

and memory scrubbing
e.g. parity, CRC, Hamming or Reed-Solomon codes
periodic memory scan mitigates cumulative errors

❑Code redundancy
▪ redundant software images
▪ redundant instructions for critical calculations (ILR)  

source-2-source compilers generate “hardened” code

❑Time redundancy
▪ execute redundant operations subsequently on the same hardware
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[Kuvaiskii et.al, 2016]

Example: Instruction-Level 
Redundancy (ILR)
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Software: Monitor and Recover

❑Software Watchdog
▪ monitor task execution, communication link, or external device

▪ execute recovery procedures 
e.g. checkpoint recovery, reset of a task or entire system, 
initiate power cycle of external hardware, etc.
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[Abaffy et.al. 2010]
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Example System Design
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The UWE Satellite Bus
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A robust, flexible, and efficient satellite bus
▪ UWE-3: Attitude Control (launch 2013)

▪ UWE-4: Electrical Propulsion (launch 2018)
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The UWE Satellite Bus

❑Modular architecture

❑Standardized subsystem interface

❑Redundancy of core components

23Advanced FDIR and Redundancy Concepts with COTS in Space – Stephan Busch, Fraunhofer EMI

OBC 
Core Module

EPS COM

UNISEC Subsystem-Interface

[Busch, 2016]
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Robust and Efficient OBDH Core Module

❑optimized as dedicated housekeeping und autonomous FDIR module

❑ two redundant microcontrollers units (MCU) in warm-backup

❑ less than 10mW total power consumption
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MCU A

TWU

Isolation Switches

Redundant Power 
Cycling Unit

High Precision 
Realtime-Clock

MCU B
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Robust and Efficient OBDH Core Module

❑Toggle Watchdog Unit (TWU)
▪ autonomous reconfiguration

▪ reset and switch-over

▪ allow slave enable
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Robust and Efficient OBDH Core Module

❑Power Cycling Unit (PCU)
▪ loosely coupled redundancy

▪ intrinsic majority voting
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Robust and Efficient OBDH Core Module

❑Power Cycling Unit (PCU)
▪ loosely coupled redundancy

▪ intrinsic majority voting

▪ full isolation of CMOS devices
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Robust and Efficient OBDH Core Module

❑Mutual MCU supervision and reconfiguration
▪ redundant software images in local and remote unit

▪ remote program memory supervision using rapid
(<2s) pseudo signature analysis checksums PSA via
JTAG/EEM hardware and bitwise-logic operators
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Robust and Efficient OBDH Core Module
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Robust and Efficient OBDH Core Module

❑Mutual MCU supervision and reconfiguration
▪ redundant software images in local and remote unit

▪ remote program memory supervision using rapid
(<2s) pseudo signature analysis checksums PSA via
JTAG/EEM hardware and bitwise-logic operators

▪ early recovery by floating gate cell marginal read
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Software Implemented Fault Injection (SWIFI)
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Software Implemented Fault Injection (SWIFI)

❑PER (periphery registers)
▪ illegal access violation
▪ hardware misconfiguration 

(e.g. clock, interfaces,…)

❑BSS (statically allocated RAM)
▪ state corruption
▪ function pointer corruption

❑STACK
▪ return pointer corruption

❑HEAP (not used)

❑Flash
▪ illegal instruction execution
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→ fault → recovery
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Software Implemented Fault Injection (SWIFI)

❑ runtime: 443 hours

❑ injections: 1.038.069

❑ recovered: 6490

❑not-recovered: 5
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Survival Analysis (here BSS)
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Survival Analysis

❑ runtime: 443 hours

❑ injections: 1.038.069

❑ recovered: 6490

❑not-recovered: 5
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Sensitivity Analysis
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selective code 
hardening
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In-Orbit Operation
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Image credits: Kosmotras

Various SEEs in first months after launch
▪ 10-6 bit-1 day-1 SEU in RAM

▪ 1 latchup (+ 50mW on 20.04.2014)

▪ several TWU recoveries and direct resets
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In-Orbit Operation

❑Clear correlation of observed SEE with position in orbit
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SEE locations for SEU detection and TWU recoveries with two minute scan interval. Overlay on Electron (> 0.04MeV) and Proton (> 0.1MeV)
MAX Integral Flux (cm−2s−1) according to AE-8/AP-8 models as simulated with SPENVIS for the UWE-3 orbit

SEU in monitored section TWU recovery
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On the Horizon
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The chance of COTS in NewSpace
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traffic jam

traffic accident

potential hazard

tracked item 
#6653E6

Onboard Autonomy
▪ onboard AI, deep learning based image 

classification and segmentation
▪ real-time information extraction

Advanced FDIR
▪ onboard AI for advanced sensor data analysis 

and anomaly detection

Payload-in-the-loop
▪ Optimization of image acquisition (e.g. pointing)
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Fraunhofer Advanced Nanosatellite
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Cryo Cooled Detector
▪ 1280 × 1024px HgCdTe detector
▪ Cryogenic Stirling Cooler (95K)
▪ 8 channel filter wheel
▪ 2.5-5μm MWIR

Radiation Sensor (Fraunhofer INT)
▪ SEE (calibrated SRAM)
▪ TID (preconditioned EEPROM)

High Performance Data Processing Unit
▪ COTS SoC ZynqMP Ultrascale+
▪ various camera interfaces
▪ image processing pipeline
▪ hardware AI accelerator
▪ mass storage

[Schimmerohn et. al., 2022]
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