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Pulsed Laser Single-Event Effects

Goals:
1. Basic understanding of PL SEE approach
2. Understanding of the various uses and applications 

of PL SEE approach
3. Current topics
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TPA and SPA are  additional tools in our 
“SEE Toolbox”
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Pulsed Laser Single-Event Effects

3

PL SEE is complementary to heavy-ion-induced SEE



SERESSA 2022 – 5-9 December 2022, CERN, Geneva, Swizerland

Pulsed Laser Single-Event Effects

For SEE studies, the pulsed laser is a tool for injecting 

charge in a well-defined manner into semiconductor 
microelectronic and nanoelectronic structures
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Pulsed-laser SEE is used for:

Ø Sensitive node identification/characterization

Ø SEU mapping of sensitive areas

Ø Digital single-event transient characterization and mitigation 

Ø Laser-induced latch-up screening/mitigation

Ø Analog single-event transient screening (ASETs)

Ø Hardened circuit (RHBD and RHBP) verification

Ø Dynamic SEE testing

Ø Experimental test setup verification

Ø Complex circuit evaluation/error signature identification

Ø Basic mechanisms studies
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Pulsed Laser Single-Event Effects
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Key Feature of PL SEE: Spatial Selectivity

Loveless, et al., IEEE TNS 57, 2933 (2010)

Loveless, et al., NSREC 2019, Paper PB-2
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• The shapes of the transients provide insights into the nature and density of defects and traps
• Hotspots appear to arise from regions of high trap density, presumably associated with threading 

dislocations
Khachatrian, et al., IEEE TNS 63, 1995 (2016)

7

Vg = -4 V

Key Feature of PL SEE: Spatial Selectivity
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Global Laser SEE Testing Facilities
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Global Laser SEE Testing Facilities
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Global Laser SEE Testing Facilities
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• Single-Photon Absorption (SPA)
• Excitation above the semiconductor 
bandgap

Can inject:
• a well-characterized quantity of 

charge
• in a well-defined x-y location
• with a well-defined charge-

deposition profile
• at a well-defined time

Pulsed Laser Single-Event Effects

11

Two-Photon Absorption (TPA, 2PA)
• Excitation (typically) below the 
semiconductor bandgap
Can inject charge:

• a well-characterized quantity of 
charge 

• in a well-defined x-y-z location
• with a well-defined charge-deposition 

profile
• at a well-defined time
• and can propagate through silicon 

wafers
• more difficult to quantify
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• Two photons absorbed 
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• Simultaneously

• Creates a single e-h pair

Optical Excitation of Carriers in Silicon

• Single photon absorbed 

• By the material (silicon) 

• Creates a single e-h pair
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Optical Absorption Spectrum of Silicon
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45 nm RHBD
PLL test

Pulsed Laser Single-Event Effects
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Pulsed Laser Single-Event Effects
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Pulsed Laser Single-Event Effects

Nonlinear	
Photodiode	

Autocorrelator	
	

Linear	(InGaAs)	
Photodiode	
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Carrier generation equation: !"(!, !, !)
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Optical beam propagation, optically thin media:

Irradiance equation:

Phase equation:

a linear absorption coefficient
b2 two-photon absorption coefficient
no index of refraction
n2 nonlinear index of refraction
sFCA free carrier absorption cross section
sFCR free carrier refraction cross section

Pulsed Laser Single-Event Effects
Nonlinear Beam Propagation
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Pulsed Laser Single-Event Effects
Nonlinear Beam Propagation

Nonlinear refraction (NLR), n2
Free-carrier refraction (FCR), 

sFCR

Two-photon absorption (TPA), b
Free-carrier absorption (FCA), sFCA

n2 > 0 sFCR < 0

Sample 
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Modeling TPA Charge Deposition: 
More Rigorous Approach Required
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Linear Absorption
(Single-Photon, Beer’s Law)

Nonlinear Absorption
(Two-Photon)

Optical Excitation of Carriers
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Carrier Density Distribution
Above-Band-Gap Single Photon Absorption

-4 -2 0 2 4
10

8

6

4

2

0

w(z)

1/e Contour

Pulse:
  2.0 pC
  1 ps
  590 nm
Index:
  3.97

Position, m

D
ep

th
 in

 M
at

er
ia

l, 
m

0
2.2E18
4.4E18
6.6E18
8.8E18
1.1E19
1.32E19
1.54E19
1.76E19
1.98E19
2.2E19

-4 -2 0 2 4
10

8

6

4

2

0

w(z)

1/e Contour

Pulse:
  2.0 pC
  1 ps
  800 nm
Index:
  3.69

Distance, µm

D
ep

th
 in

 M
at

er
ia

l, 
µm

0
1E17
2E17
3E17
4E17
5E17
6E17
7E17
8E17
9E17
1E18
1.1E18
1.2E18
1.3E18
1.4E18
1.5E18
1.6E18
1.7E18
1.8E18
1.9E18
2E18

&'"#$%
z

oeIzrI a-=),( ;  N(r,z) µ I(r,z)

&'"#$% !""#$%

22



SERESSA 2022 – 5-9 December 2022, CERN, Geneva, Swizerland

w
b

w
a

!! 2
),(),( ),( 2

2 zrIzrI
dt
zrdN

+=

Carrier generation equation:

(6b)                              0  ,),(
2

 )(

(6a)                        0 ,)()(exp )(

(5b)                                       0  ,
)(1

)( ),(

(5a)                                      0  ,)(exp)(),(

22
2

1

2

³=

³-=

³
+

=

³-=

ò

ò
¥

¥-

¥

¥-

mmmP

mmmP

m
mo

o
m

mom

zdttzIzN

zdttIzzN

z
ztI

tItzI

zztItzI

w
b

a
w
a

b

a

!

!

Carrier Generation:

Beer-Lambert Law

Optical Excitation of Carriers

23



SERESSA 2022 – 5-9 December 2022, CERN, Geneva, Swizerland

• Most efficient in the high-
irradiance region near the 
focus of the beam
• Because of I2 dependence
• Lack of exponential 

attenuation
• Carriers can be injected at 

any depth in the material

• Optimizing TPA generation:
• Tight focus
• Short pulse (~150 fs)
• High pulse energy

Charge Generation by Two-Photon Absorption

24



Correct aspect ratio

25
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(Inverting Configuration; gain of 20)
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McMorrow, et al., IEEE TNS, 50, 2199 (2003). 
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McMorrow, et al., IEEE TNS, 50, 2199 (2003). 

“Z” Dependence: LM124 Q20 TPA: C1-epi Junction
(Inverting Configuration; gain of 20)
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“Z” Dependence: LM124 Q20 TPA: C1-epi Junction
(Inverting Configuration; gain of 20)
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McMorrow, et al., IEEE TNS, 50, 2199 (2003). 

“Z” Dependence: LM124 Q20 TPA: C1-epi Junction
(Inverting Configuration; gain of 20)
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“Z” Dependence: LM124 Q20 TPA: C1-epi Junction
(Inverting Configuration; gain of 20)
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“Z” Dependence: LM124 Q20 TPA: C1-epi Junction
(Inverting Configuration; gain of 20)
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“Z” Dependence: LM124 Q20 TPA: C1-epi Junction
(Inverting Configuration; gain of 20)
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“Z” Dependence: LM124 Q20 TPA: C1-epi Junction
(Inverting Configuration; gain of 20)
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“Z” Dependence: LM124 Q20 TPA: C1-epi Junction
(Inverting Configuration; gain of 20)
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“Z” Dependence: LM124 Q20 TPA: C1-epi Junction
(Inverting Configuration; gain of 20)
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“Z” Dependence: LM124 Q20 TPA: C1-epi Junction
(Inverting Configuration; gain of 20)
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Front Side vs. Backside Illumination
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Front side
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Laser 
beam

Laser 
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38

Lewis, et al., 
IEEE TNS 48, 
2193 (2001)
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Front Side vs. Backside Illumination
SPA ASET Mapping – LM124

• Plots illustrate the spatial distribution of the SET amplitude
• Sensitive areas clearly identified
• Effects of metalization evident

LM124
Front side
1064 nm

Backside
1064 nm

Lewis, et al., IEEE TNS 48, 2193 (2001)
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Primary experimental constraint:
• Optical access to silicon required

Modern process technologies
• Many interconnections layers
• Metal lines totally absorb light
• Dummy cells: metal fill for process planarization

Packaging
• Ceramic or plastic opening
• Lead frame masking => repackaging
• Flip-chip
• 2.5-D, 3-D

Laser SEE Testing, Technology and Packaging

Solution:
Backside, through-
wafer testing

40
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Additional Experimental Considerations
for Laser SEE Testing

• Test setup requires considerations different from heavy ion tests
• SEU tests: real time error feedback advantageous
• Scanning: synchronization to xyz stage and oscilloscope

• Sample preparation:
• Optical access to silicon

• Top: package delidded
• Back: backside polished; thinned if necessary
• Board: no major obstructions (capacitors, etc.)

• Angle of incidence typically (almost always) set at zero degrees
• Pulse energy adjusted to tune effective LET
• Pulse energy (LET) can be varied continuously
• Angular effect limited by high index of refraction (Snells’s Law)
• Spot size effects

• Mechanical stability essential

• Optical calibration and validation essential for many studies
41
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Single-Event Upset Mapping in  
an SRAM Cell

42
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WE RE

• 0.8 µm AMS BiCMOS technology
• low density of metal tracks (SPA technique and frontside testing)
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Pouget, et al. Microelectronics 
Reliability, 40, 1371 (2000)

Single-Event Upset Mapping in an SRAM Cell
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Scanning Automation : Basic Principle

Pouget, et al. Microelectronics 
Reliability, 40, 1371 (2000)

Graphics: Vincent  Pouget
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Spatial Selectivity Example:

Laser-Induced Latchup Evaluation
and Mitigation in CMOS Devices

48
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• LVDS Quad differential line driver (DS90C031) designed 
into (~2000) GPS II upgrade program

• Unanticipated latchup sensitivity observed in HI testing 
(NASA)
• Unacceptable for mission requirements; threatened to delay 
launch date  (big $$$)
• Pulsed laser SPA SEL evaluation  (NRL) revealed sensitivity 
localized to a small region ® redesign possible
• Redesigned (Boeing) ® refabricated (NS)® retested (NASA)
• No Latchup observed in redesigned part
• Launch on schedule 

Latch-Up Mitigation of RH Parts 
for Space Missions

49
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National Semiconductor DS90C031 LVDS
Original Design

Ground

Resistor

Drive Transistor

Latchup Location 
Identified by Laser

1

2

McMorrow, et al., IEEE TNS 
53, 1819 (2006). 

50

Design: Boeing

Fab: National Semi

Rad test: NASA Goddard

Also involved: Sandia
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National Semiconductor DS90C031 LVDS
Comparison of Two Designs

P+
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McMorrow, et al., IEEE TNS 53, 1819 (2006). 

Original Design Redesigned Part
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Design: Boeing

Fab: National Semi

Rad test: NASA Goddard

Also involved: Sandia
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Part Screening Using PL SEE
• Screening to reject
• Screening to accept

52



SERESSA 2022 – 5-9 December 2022, CERN, Geneva, Swizerland

• This example: two Resolver-to-Digital 
Converters were screened for latchup
for a NASA mission

• The pulsed laser permits the rapid and  
accurate location of SEU and SEL 
sensitive regions of COTS parts with 
sub-micron precision

DDC RDC19220

Latch-Up Screening of COTS Parts 
for Space Missions

53
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• The latch-up sensitive areas for 
one of the parts is shown here 

• Based solely on these laser 
results, this part was eliminated 
from consideration for this and 
future NASA missions

SEL sensitive areas in COTS RDC

Latch-Up Screening of COTS Parts 
for Space Missions

Buchner, et al., TNS, 46, 1445 (1999) (DDC RDC19220)
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• The latch-up sensitive areas for 
one of the parts is here

• Based solely on these laser 
results, this part was eliminated 
from consideration for this and 
future NASA missions

• The other part was latch-up free 
and, following heavy-ion testing, 
was deemed acceptable for the 
mission in question

SEL sensitive areas in COTS RDC
(DDC RDC19220) Buchner, et al., TNS, 46, 1445 (1999) 

Latch-Up Screening of COTS Parts 
for Space Missions

55
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• This example: 
2.8 pJ latchup threshold (590 nm)
1.4 pC deposited charge
LETth: 8 MeV·cm2/mg

• HI LET threshold: 5-15 MeV·cm2/mg
• 0.8 µm bulk technology node

Latch-Up Screening of COTS Parts 
for Space Missions

Can SEL screening be quantitative?



SERESSA 2022 – 5-9 December 2022, CERN, Geneva, Swizerland

Single-Event Latchup Screening

• Topic of considerable current interest

• Can we use laser SEL screening to relieve stress on 
accelerators? 

• SEL screening is routinely used in different 
laboratories to eliminate parts from consideration for 
space missions and to minimize the amount of heavy-
ion testing required

• However, SEL screening is rarely used for part 
acceptance, but that may change as the landscape 
moves towards constellations of lower-cost, smaller 
satellites, and as quantitative methods mature
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Analog Single-Event Transient (ASAT) Screening

• Good agreement between laser- and ion-induced 
individual SET pulse shapes and for the VDt
representation

• Pulsed laser irradiation can be used to generate 
the “worst case” transients for linear devices

• Pulsed laser irradiation has proven to be an 
effective and cost efficient screening method for 
linear bipolar parts for space missions

• Such screening has been used in lieu of heavy-ion 
testing by NRL, NASA Goddard, JPL, and others
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Laser SEE Screening Conclusions and Status

• Screening to eliminate parts:
• Demonstrated for SEL and ASET
• Commonly utilized by various laboratories

• Screening to accept parts:
• Work in progress; some examples exist
• Depends on criticality of the mission
• Depends on criticality of the part
• Depends on philosophy of program 

manager
• Part by part decision
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Laser-Ion Correlation

60

With proper dosimetry, calibration, and a validated charge-
deposition model, we can now attack problems that were not 
possible previously. TPA laser-ion correlation is one such 
problem. 
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Laser/Ion Correlation:
Description of the Challenge

Size ratio of sensitive volume to charge profile
108 10-6106 104 102 100 10-2 10-4

Bulk Diode Bulk Transistor CMOS SOI

Challenges:
• Technology diversity

• CMOS, HBT, Bulk, Epitaxial, SOI, III-V, Heterojunction, 
FinFET, etc.

• Incident (TPA) laser pulse parameters
• Accurate beam-line characterization and calibration
• Laser pulse energy, spot size, pulse width

• Accurate modeling of the charge deposition
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Historical Laser/Ion Correlation
Empirical Correlation - SPA

• Empirical correlation  by identifying 
conditions that gave rise to an equivalent 
device response

• Correlation Factor:
3 pJ ≈ 1 MeV�cm2/mg

• Proved valid for a wide range of devices 
and technology nodes (down to 0.25 µm 
bulk CMOS)

• Specific to a given optical geometry (laser 
wavelength, pulse width, spot size)

McMorrow, et al., TNS, 47, 559 (2000)

Moss, et al., TNS 42, 1948 (1995)

590 nm Top-Side Single-Photon 
Absorption SEU and SEL
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McMorrow, et al., IEEE TNS 60, 4184 (2014)

Laser/Ion Correlation: 90 nm SOI SRAM

	

90 nm SOI CMOS SRAM

Heavy Ion: 0.1 < LETth < 0.46

Laser: LETth ≈ 0.2 MeV∙cm2/mg
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Hales, et al., IEEE TNS 65, 1724 – 1733 (2018)

Laser/Ion Correlation: Bulk Si Diode - TPA

94% 47% 15%
Ø Combination of experimental measurements and accurate charge deposition modeling

Nearly one-to-one correlation observed over entire LET range
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Axial size: 10-12 µm in silicon 

Axial size: >600 µm in silicon 

Spherical Lens vs. Axicon TPA Charge Generation in Silicon

Hales, et al., TNS 67, 81-90 (2020)

PL SEE Using Axicon -- Quasi-Bessel Beam 

QBB
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PL SEE Using Axicon -- Quasi-Bessel Beam 

Hales, et al., Optics Express 2019

Constant LET
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V-Dt Curves for Entire LM124 Chip

• Acquired QBB data one month before 
heavy-ion testing

𝑳𝑬𝑻 ≈ 𝟓𝟗
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V-Dt Curves for Entire LM124 Chip

• Two data sets show remarkably 
good correlation across all four major 
branches with both the slopes and end 
points matching well

𝑳𝑬𝑻 ≈ 𝟓𝟗
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V-Dt Curves for Entire LM124 Chip

Ø Randomly selected 500 SETs to reproduce sparsity of heavy-ion data; improves 
agreement 

𝑳𝑬𝑻 ≈ 𝟓𝟗 𝑳𝑬𝑻 ≈ 𝟓𝟗
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V-Dt Curves for Entire LM124 Chip

𝑳𝑬𝑻 ≈ 𝟓𝟗

• Comparison of respective QBB and Heavy Ion SETs

• Good correlation shown for worst-case SETs
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V-Dt Curves for Entire LM124 Chip

• Comparison of respective QBB and Heavy Ion SETs

• Good correlation shown for worst-case SETs

𝑳𝑬𝑻 ≈ 𝟓𝟗
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Correlate

• Accurate SET prediction in a complex device has been demonstrated
– Laser-equivalent LET is calculated directly, without fitting or adjustable 

parameters
– Complicated SET response in LM124 demonstrated via whole chip response and 

worse-case transients 

• QBB provides a laser testing approach with predictive capability that can 
potentially help alleviate the burden on traditional heavy-ion testing 

• Investigation in wider variety of devices being targeted as well as other SEEs

Heavy-ion testingPulsed-laser 
testing

Predict

Axicon SET Summary
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Summary and Conclusions

• Brief overview of PL SEE

• Theoretical basis

• Experimental examples

• Historical

• Current

• Interesting things moving forward

• Laser/ion correlation

• PL SEE Part Screening

• Axicon-based SEE
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