SERESSA 2022

5th to 9th of December at CERN, Geneva

Modelling and prediction of Single Event Transient and Single Event Upset

Pr. Frédéric Wrobel, Montpellier University

frederic.wrobel@umontpellier.fr

Particles at play in SEE

- lons
 - from Space
 - from radioactivity (alpha particle)
- Protons
 - from Space
 - in the upper atmosphere
- Neutrons
 - In atmosphere, even at ground level!

How can we predict the effect of these particles on electronics?

Multi-scale / Multi-physics

Agenda

- Context
- Particle interaction with matter
- Monte Carlo approach
 - ✓ Monte Carlo?
 - **✓** RPP
 - ✓ Diffusion-Drift model
 - ✓ Tools examples
- Simulation examples
 - ✓ SET sensitivity
 - ✓ SEU sensitivity
- Conclusions

Particle interaction

SEE are always triggered following the ionization of the device.

Ygor Quadros De Aguiar, PhD Thesis, Univ. de Montpellier, december 2020

- lons: they ionize directly the matter by interacting with the electrons of the matter
- ☐ Neutrons: they indirectly ionize the matter by producing secondary ions
- Protons: they do both!

Stopping power

□ Natural unit: MeV/cm or MeV/μm

Stopping power =
$$-\frac{dE}{dx} > 0$$

In order to have a stopping power which does not depend on the material state (gas, solid, liquid), it is useful to divide the « natural » stopping power by the volumic mass:

Mass Stopping power =
$$-\frac{1}{\rho}\frac{dE}{dx} > 0$$

- ☐ Therefore, the stopping power is often expressed in MeV.cm²/mg
 - NB: the volumic mass for silicon is $\rho=2.32$ g/cm³

Ion interaction

Stopping power = $-\frac{dL}{dx} > 0$

Direct ionization of ions

Range of ions in silicon

$$R = \int_{0}^{E} \frac{1}{Stopping\ power} dE$$

The range is the distance of a particle before being stopped.

Generally expressed in cm or µm

Nucleons Interactions

The main processes involved in neutrons and protons interactions are:

Protons are ions: they can also ionize directly the matter!

First open channel for n+28Si

Reaction products	Threshold (MeV)
²⁹ Si+ γ	0
²⁸ Si+ n	0
²⁸ Si*+ n	1.78
25 Mg + α	2.75
²⁸ Al + p	4.00
²⁷ Al + d	9.70
24 Mg + n + α	10.34
²⁷ Al + n + p	12.00
²⁶ Mg + ³ He	12.58
21 Ne + 2α	12.99

Agenda

- Context
- Particle interaction with matter
- Monte Carlo approach
 - ✓ Monte Carlo?
 - **✓** RPP
 - ✓ Diffusion-Drift model
 - ✓ Tools examples
- Simulation examples
 - ✓ SET sensitivity
 - ✓ SEU sensitivity
- Conclusions

Monte Carlo method?

- ☐ During the interaction of particle in the device, there are many possible configurations in terms of:
 - Geometry
 - Particle nature
 - Particle direction
 - Particle energy

Monte Carlo method is very powerful in order to mimic the multitude of scenarii. It uses (pseudo-) random numbers.

Example: Calculation of π by Monte Carlo

 $N \propto \text{square area} = a^2$ $n \propto \text{circle area} = \frac{\pi}{4}a^2$

$$\pi \approx 4 \frac{n}{N}$$

$$\pi \approx 4\frac{15}{20} = 3.0000$$

$$\pi \approx 4\frac{44}{56} = 3.1428$$

By increasing the number of points, the accuracy on π is better and better:

$$\pi = \lim_{N \to \infty} \left(4 \frac{n}{N} \right)$$

Monte Carlo steps

Particle-matter interaction

Particle-matter interaction

- **×** Some useful method and assumptions to decrease calculation time:
- Nuclear physics can be pre-computed in database (DHORIN)
- Ions tracks are assumed to be linear
- Gamma can be ignored for SEE
- Secondary neutrons are ignored

Agenda

- Context
- Particle interaction with matter
- Monte Carlo approach
 - ✓ Monte Carlo?
 - **✓** RPP
 - ✓ Diffusion-Drift model
 - ✓ Tools examples
- Simulation examples
 - ✓ SET sensitivity
 - ✓ SEU sensitivity
- Conclusions

The RPP approach

An SEE occurs if:

- an ion crosses the sensitive volume, AND
- the deposited energy is high enough (>critical energy)

SEU simulations

Cross section

The concept of a **cross section** is used to express the probability of triggering an SEE. It is defined by:

Soft Error Rate (SER)

$$SER = \int \frac{d\varphi}{dE} \cdot \sigma_{evt}(E) dE$$

Limitations

The method is often used to obtain general trends but it has 3 main limitations:

- ☐ Requires 2 empirical parameters: sensitive volume size + critical energy (critical charge)
- ☐ No time dependence: SET?
- □ Does not actually reproduce heavy ion cross section (only gives a step function)

Agenda

- Context
- Particle interaction with matter
- Monte Carlo approach
 - ✓ Monte Carlo?
 - **✓** RPP
 - ✓ Diffusion-Drift model
 - ✓ Tools examples
- Simulation examples
 - ✓ SET sensitivity
 - ✓ SEU sensitivity
- Conclusions

Transient current at MOS level

Electrons and holes transport
Transient current(s) at MOS level

Device simulation tool (transport+Poisson laws)

- Device simulation tool are very CPU-consuming
- ☐ They solve transport and Poisson laws
- ☐ The structure must be well known

Alternately,

- ☐ The diffusion-collection model allow estimating the transient current
- No mesh but an integration over the track and the drain area as a function of time
- A basic structure is used

SET Monte Carlo simulation

SET Monte Carlo simulation

SET Monte Carlo simulation

Agenda

- Context
- Particle interaction with matter
- Monte Carlo approach
 - ✓ Monte Carlo?
 - **✓** RPP
 - ✓ Diffusion-Drift model
 - **✓** Tools examples
- Simulation examples
 - ✓ SET sensitivity
 - ✓ SEU sensitivity
- Conclusions

Monte Carlo tools

☐ Tools are generally proprietary. Some examples:

Company	Tool
Airbus	DASIE
ST-Microelectronics	TIARA
Onera	MUSCA
IBM	SEMM
Clemson University	CUPID
Vanderbilt University	MRED
G4-SEE	CERN
Montpellier University	MC-ORACLE then PredicSEE

Circuit in PredicSEE

- ☐ Impact on the sensitivity of digital circuits considering:
 - different transistor layout design approaches (i.e., sizing, placement, folding)
 - the implications of the input stimuli

Agenda

- Context
- Particle interaction with matter
- Monte Carlo approach
 - ✓ Monte Carlo?
 - **✓** RPP
 - ✓ Diffusion-Drift model
 - ✓ Tools examples
- Simulation examples
 - ✓ SET sensitivity
 - ✓ SEU sensitivity
- Conclusions

Case Study: Buffer (45nm)

☐ Functions can be implemented in different ways

Ygor Quadros De Aguiar, PhD Thesis, Univ. de Montpellier, december 2020

Case Study: AOI21

- ☐ Functions can be implemented in different ways
- ☐ AOI21 is smaller, faster and with a lower consumption
- What about SET sensitivity?

Ygor Quadros De Aguiar, PhD Thesis, Univ. de Montpellier, december 2020

Case Study: AOI21

Sensitivity depends on function implementation but also on pin assignment!

Ygor Quadros De Aguiar, PhD Thesis, Univ. de Montpellier, december 2020

Gate sizing & Transistor stacking

$$\begin{cases} Q_{crit} = C_{circuit} \times V_{DD} \\ C_{circuit} \propto WL \end{cases}$$

Gate Sizing – increases circuit capacitance and drive current.

Transistor Stacking– increases circuit capacitance reduces leakage current.

Gate sizing & Transistor stacking

Ygor Quadros De Aguiar, PhD Thesis, Univ. de Montpellier, december 2020

Agenda

- Context
- Particle interaction with matter
- Monte Carlo approach
 - ✓ Monte Carlo?
 - **✓** RPP
 - ✓ Diffusion-Drift model
 - ✓ Tools examples
- Simulation examples
 - ✓ SET sensitivity
 - ✓ SEU sensitivity
- Conclusions

Multi-scale / Multi-physics

Criterion Choice?

RPP

Criterion Choice?

- Accounting for the circuit effect at the cell level
- <u>But</u>, with not « too much » details on the SPICE model

RPP

Basic modeling example

NMOS and PMOS currents?

☐ The simplest:

• Sub threshold if $V_{GS} < V_T$

$$I_{N,p}(V_{GS}, V_{DS}) = 0$$
 (eq. 1)

• Triode if $V_{GS} \ge V_T$ and $V_{DS} < V_{GS} - V_T$

$$I_{N,P}(V_{GS}, V_{DS}) = \mu C_{ox} \frac{W}{L} (1 + \lambda V_{DS}) \left(V_{GS} - V_T - \frac{V_{DS}}{2} \right) \times V_{DS}$$
(eq. 2)

• Saturation if $V_{GS} \ge V_T$ and $V_{DS} \ge V_{GS} - V_T$

$$I_{N,P}(V_{GS}, V_{DS}) = \frac{\mu C_{ox}}{2} \frac{W}{L} (1 + \lambda V_{DS}) (V_{GS} - V_T)^2$$
 (eq. 3)

- Is it enough? At least better than collected charge consideration.
- □ Actually not enough for describing the cell in normal application but enough for describing the behaviour of the cell during SEE.

Current source parameters?

☐ It is easy to have order of magnitude of the parameters involved in the previous set of equations:

	150-nm	90-nm	65-nm
V _T	0.4 V	0.4 V	0.24 V
μ _N (cm²/Vs)	140	140	140
μ _P (cm²/Vs)	35	35	35
t _{ox}	2.5 nm	1.2 nm	1.2 nm
W/L	0.2μm/0.15μm	0.11μm/0.09μm	0.12μm/0.065μm
λ	0	0	0
Q_{crit}	3 fC	1.2 fC	0.8fC
V _{DD}	1.5 V	3.3-1 V	2.5-1 V

Results for the 150-nm

- Default parameters for the 150nm.
- No fitting parameters.

Experimental data from:

R. Koga, J. George, G. Swift, C. Yui, L. Edmonds, C. Carmichael, T. Langley, P. Murray, K. Lanes and M. Napier, "Comparison of Xilinx Virtex-II FPGA SEE sensitivities to protons and heavy ions," IEEE Trans. Nucl. Sci., vol 51, NO 5, pp. 2825-2833, Oct 2004.

Results for the 90-nm

- Default parameters for the 90nm.
- No fitting parameters.

Experimental data from:

Swift, G.M.; Allen, G.R.; Chen Wei Tseng; Carmichael, C.; Miller, G.; George, J.S.;

"Static Upset Characteristics of the 90nm Virtex-4QV FPGAs," Radiation Effects Data Workshop, 2008 IEEE, vol., no., pp.98-105, 14-18 July 2008.

Results for the 65-nm

- Default parameters for the 65nm.
- No fitting parameters.

Experimental data from:

B.D. Sierawski, K. M. Warren, R. A. Reed, R. A. Weller, M. M. Mendenhall, R. D. Schrimpf, R. C. Baumann, and V. Zhu, "Contribution of low-energy (<10MeV) neutrons to upset rate in a 65 nm SRAM," IRPS 2010, IEEE International, pp. 395-399, 2010.

More accurate simulations?

- ☐ If more accurate parameters are known they can obviously be used.
- ☐ The more accurate method being when the spice model is used (but not often available).
- ☐ It is also possible to fit these parameters to experimental data in order to accurately estimate the sensitivity for another particle.

	150-nm	90-nm	65-nm
V _T	0.4 V	0.4 V	0.24 V
μ _N (cm²/Vs)	140	140	140
μ _p (cm²/Vs)	35	35	35
t _{ox}	2.5 nm	1.2 nm	1.2 nm
W/L	0.2μm/0.15μm	0.11μm/0.09μm	0.12μm/0.065μm
λ	0	0	0
Q_{crit}	3 fC	1.2 fC	0.8fC
V _{DD}	1.5 V	3.3-1 V	2.5-1 V

Agenda

- Context
- Particle interaction with matter
- Monte Carlo approach
 - ✓ Monte Carlo?
 - **✓** RPP
 - ✓ Diffusion-Drift model
 - ✓ Tools examples
- Simulation examples
 - ✓ SET sensitivity
 - ✓ SEU sensitivity
- Conclusions

Conclusions

Possible simplifications:

database, linear tracks, killed particles

simplified TCAD

RPP

Simplified model of the TMOS

Conclusions

- Monte Carlo tools are powerful tools that can mimic:
 - various kind of primary particles (neutron, proton, ion, alpha pollutant)
 - a large variety of interaction modes
 - complex geometry with different materials
 - electric consideration
- They allow investigating:
 - SEE sensitivity
 - different kinds of SEE : SEU, SET, MCU, MBU, SEL ...
 - parameters effects (sizing, VDD, pin assignment, ...)
- They can use different levels of complexity

SERESSA 2022

5th to 9th of December at CERN, Geneva

Modelling and prediction of Single Event Transient and Single Event Upset

Pr. Frédéric Wrobel, Montpellier University

frederic.wrobel@umontpellier.fr

Thank you! Any questions?

