5th to 9th of December at CERN, Geneva

Introduction to G4SEE:

a toolkit for simulating radiation effects in electronics

Dávid Lucsányi, CERN

Agenda (part 2)

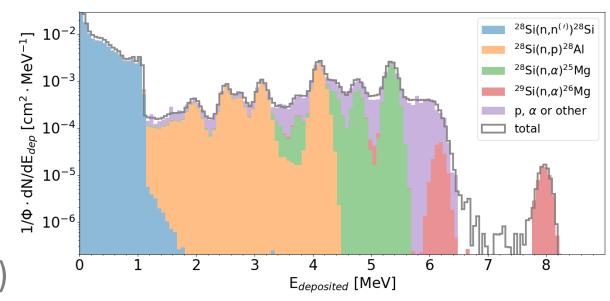
- Hands-on tutorial #2:
 - The simulation case: Neutron interactions in Silicon (ISSI SRAM)
 - 2.1) Geometry, Primaries, Scoring and Physics
 - 2.2) Biasing (non-analog MC)
 - 2.3) Detailed Scoring
- Validation of the G4SEE toolkit with monoenergetic neutrons

Get the latest G4SEE release!

- See lecture preparation slides on <u>SERESSA Indico page</u>
- Options to run G4SEE toolkit on your computer:
 - A) Cloning <u>CERN GitLab repos</u> & building from source (not recommended now) OR —

B) Using Docker (recommended, see lecture preparation slides)

- After Docker installation, pull the latest, **G4SEE v0.5.1** Docker image
- Run a Docker container based on G4SEE v0.5.1 image (with shared folder)
- Download 'tutorial 2' folder from CERNbox


CLI commands to run on host computer to start a G4SEE Docker container

Download or copy 'tutorial_2' folder to the shared folder of your host computer, so you can access it in Docker container! Share a folder between host

Tutorial #2 – Neutrons in Silicon [1,2]

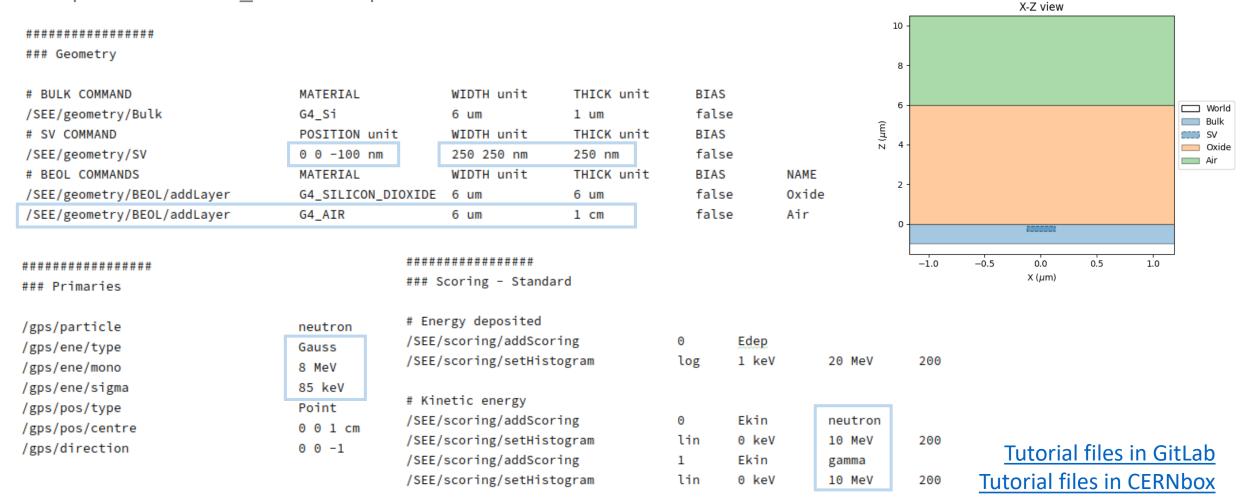
- DUT: Si diode det., 40-nm ISSI SRAM
- Facilities: PTB (PIAF)
- Primaries: 8 MeV neutrons
- Physics: nuclear reactions
- Scoring: standard, detailed
- **For SEU calc.:** Q_{crit}=0.72 fC (≈16.2 keV)
- Tutorial files can be viewed in GitLab

Contribution of different nuclear reactions to energy deposition distribution of 8 MeV neutrons in natural Silicon [1]

References (open-access)

[1] Dávid Lucsányi et al., "G4SEE: A Geant4-Based Single Event Effect Simulation Toolkit and Its Validation Through Monoenergetic Neutron Measurements," in *IEEE TNS*, vol. 69, no. 3, March 2022, (link)

[2] Matteo Cecchetto et al., "0.1–10 MeV Neutron Soft Error Rate in Accelerator and Atmospheric


Environments", in *IEEE TNS*, vol. 68, no. 5, May 2021, (link)

See lecture by Matteo Cecchetto (Thursday, 10h10)!

Tutorial 2.1 – Geometry, Primaries, Scoring

• Open the *tutorial_2-1.mac* input macro file:

Tutorial 2.1 – Physics

• Add elastic and inelastic hadronic physics to the simulation, since so far we had EM physics models only

1 nm

Secondary particles with expected range below the defined range cuts are not produced, its E is deposited on the spot instead, it can save computational time!

Default physics, highest accuracy general EM physics in G4 (no need to add here explicitly)

Hadron **elastic** physics with High Precision (HP) neutrons models

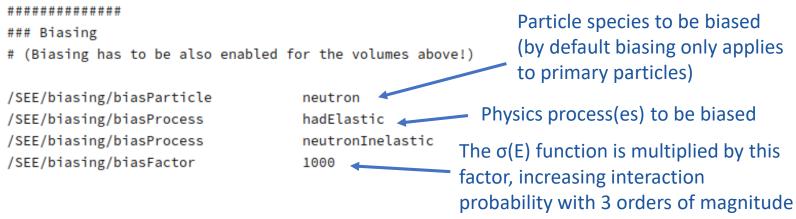
Hadron inelastic physics with HP neutron models

HP models are strongly recommended for <20 MeV neutrons! See full list of physics options in <u>G4SEE docs!</u>

- Running the simulation with 300k neutron primaries, we get an empty Edep histogram (only a single event!)
- Simulation running time increases proportionally with primary particle number and particle interactions

Commands in G4SEE Docker container (CLI)

```
:/home/tutorial_2# mkdir output_2 && cd output_2/
:/home/tutorial_2/output_1# g4see ../tutorial_2-1.mac > stdout.log
:/home/tutorial_2/output_1# mergeHistograms . --delete
:/home/tutorial_2/output_1# less Edep_0_histogram.out
```


Tutorial files in GitLab
Tutorial files in CERNbox

/SEE/physics/setHadronCut

Tutorial 2.2 – Biasing

- Let's increase statistics, by running a non-analog Monte Carlo simulation using a biasing (variance reduction) technique!
- G4SEE has microscopic XS biasing implemented to artificially increase probabilities of certain particle interactions
- Open the *tutorial 2-2.mac* input macro file:

#############

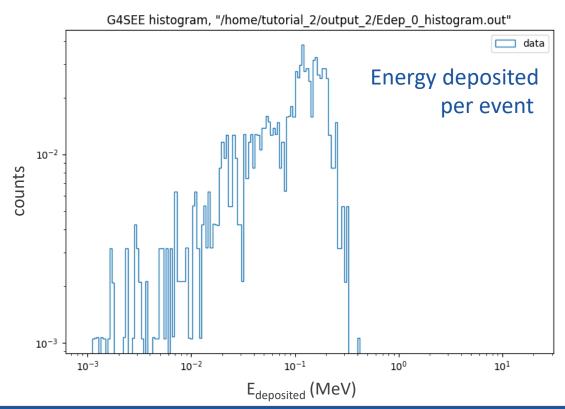
Geometry

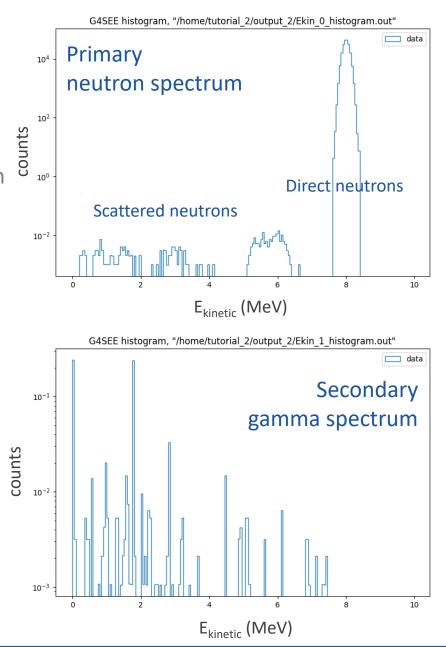
BULK COMMAND
/SEE/geometry/Bulk
SV COMMAND
/SEE/geometry/SV
BEOL COMMANDS
/SEE/geometry/BEOL/addLayer
/SEE/geometry/BEOL/addLayer

Don't forget to enable biasing for the volumes here!

MATERIAL	WIDTH unit	THICK unit	BIAS	
G4_Si	6 um	1 um	true	
POSITION unit	WIDTH unit	THICK unit	BIAS	
0 0 -100 nm	250 250 nm	250 nm	true	
MATERIAL	WIDTH unit	THICK unit	BIAS	NAME
G4_SILICON_DIOXIDE	6 um	6 um	true	0xide
G4_AIR	6 um	1 cm	false	Air

Use biasing cautiously, since it is very easy to over-bias a simulation, producing non-valid results!


To avoid this, run at least once without any


biasing (with high pp number) for validation

Tutorial files in GitLab
Tutorial files in CERNbox

Tutorial 2.2 – Biasing

- Running similarly as before (300k pp), but now we get counts in histograms thanks to the applied XS biasing
- Histogram counts are weighted to correct for artificial increase in interaction probabilities, so results should be in agreement with an analog Monte Carlo simulation (no biasing)

Tutorial 2.3 – Detailed Scoring

• Open the *tutorial_2-3.mac* input macro file:

```
##################
### Scoring - Detailed
/SEE/scoring/detailed
                                                                 # default: false
                                                     true
# Kinetic energy threshold for individual particle scoring
/SEE/scoring/detailed/e-/setThreshold
                                                     10 keV
                                                                 # default: 10 keV
/SEE/scoring/detailed/gamma/setThreshold
                                                                 # default: 100 keV
                                                    100 keV
# Grouping method used for particles below kinetic energy threshold
/SEE/scoring/detailed/e-/groupByAncestor
                                                     false
                                                                 # default: false
# Printing option
/SEE/scoring/detailed/printPrimary
                                                                 # default: true
                                                     false
/SEE/scoring/detailed/setCSVFormat
                                                     false
                                                                 # default: true
# Scored quantities and information particle-by-particle
/SEE/scoring/detailed/addTrack
                                    true
/SEE/scoring/detailed/addParent
                                    true
/SEE/scoring/detailed/addEkin
                                    true
```

true

true

true

true

true

true

true

Tutorial files in GitLab
Tutorial files in CERNbox

Commands in G4SEE Docker container (CLI)

```
:/home/tutorial_2# mkdir output_3 && cd output_3/
:/home/tutorial_2/output_3# g4see ../tutorial_2-3.mac > stdout.log
:/home/tutorial_2/output_3# ls
:/home/tutorial_2/output_3# less Hits_t0.out
```

/SEE/scoring/detailed/addProcess

/SEE/scoring/detailed/addEdep

/SEE/scoring/detailed/addZ

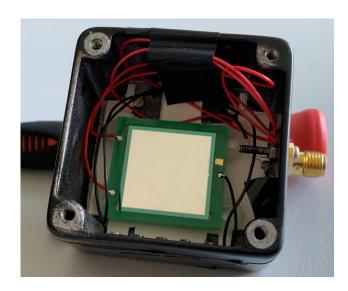
/SEE/scoring/detailed/addA

/SEE/scoring/detailed/addCounts

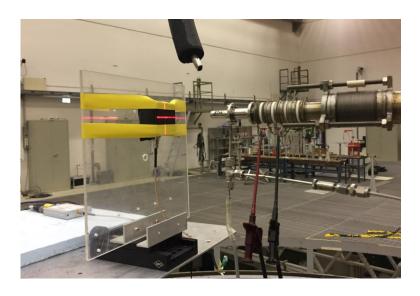
/SEE/scoring/detailed/addVolume

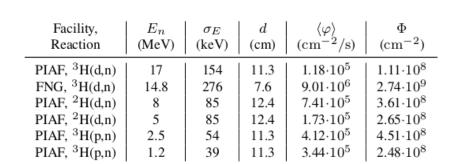
/SEE/scoring/detailed/addEexc

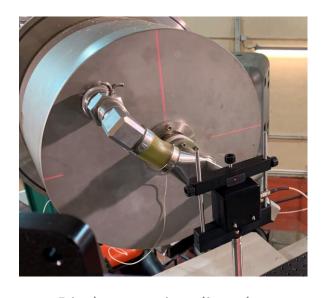
Tutorial 2.3 – Detailed Scoring


event	particle	weight	Z	Α	track	parent	E_kin	process	volume	E_dep	counts
377	alpha	1.055e-03	2	4	2	1	3.8826e+00	b(neutronInelastic)	Sensitive	2.5712e-02	1
377	Mg25	1.055e-03	12	25	3	1	1.5530e+00	b(neutronInelastic)	Sensitive	2.4899e-02	1
377	g(e-)	nan	0	0	-1	nan	nan	ionIoni	Sensitive	5.4009e-03	5
490	neutron	1.053e-03	0	1	2	1	5.9415e+00	b(neutronInelastic)	Sensitive	9	1
490	Si28	1.053e-03	14	28	3	1	3.4732e-01	b(neutronInelastic)	Sensitive	1.2955e-01	1
490	gamma	1.053e-03	0	0	4	1	1.7778e+00	b(neutronInelastic)	Sensitive	0	1
732	016	1.069e-03	8	16	2	1	1.0890e+00	b(hadElastic)	0xide	1.3268e-01	1
914	gamma	1.057e-03	0	0	4	1	4.8919e+00	b(neutronInelastic)	Bulk	0	1
914	gamma	1.057e-03	0	0	5	1	1.7790e+00	b(neutronInelastic)	Bulk	0	1
1212	neutron	1.077e-03	0	1	2	1	5.2899e+00	b(neutronInelastic)	Bulk	0	1
1257	016	1.048e-03	8	16	3	1	1.2290e-01	b(neutronInelastic)	0xide	9.4224e-02	1
1342	neutron	1.072e-03	0	1	2	1	3.9277e-01	b(neutronInelastic)	Sensitive	0	1
1342	gamma	1.072e-03	0	0	3	1	5.1945e+00	b(neutronInelastic)	Sensitive	0	1
1342	gamma	1.072e-03	0	0	4	1	1.4963e+00	b(neutronInelastic)	Sensitive	0	1
1342	gamma	1.072e-03	0	0	5	1	4.7253e-01	b(neutronInelastic)	Sensitive	9	1
1342	Si30	1.072e-03	14	30	6	1	3.3550e-01	b(neutronInelastic)	Sensitive	1.3925e-01	1
1428	016	1.050e-03	8	16	3	1	5.6249e-02	b(neutronInelastic)	0xide	4.4397e-02	1
1536	Si28	1.066e-03	14	28	2	1	4.7965e-02	b(hadElastic)	Sensitive	4.7965e-02	1
1565	Al28	1.067e-03	13	28	3	1	4.7900e-01	b(neutronInelastic)	Bulk	1.6775e-01	1
1605	neutron	1.053e-03	0	1	2	1	6.0902e+00	b(neutronInelastic)	Sensitive	0	1
1605	Si28	1.053e-03	14	28	3	1	2.3035e-01	b(neutronInelastic)	Sensitive	1.2189e-01	1
1605	gamma	1.053e-03	0	0	4	1	1.7730e+00	b(neutronInelastic)	Sensitive	0	1
1984	neutron	1.055e-03	0	1	2	1	6.0284e+00	b(neutronInelastic)	Sensitive	0	1
1984	Si28	1.055e-03	14	28	3	1	2.0772e-01	b(neutronInelastic)	Sensitive	1.6477e-01	1
1984	gamma	1.055e-03	0	0	4	1	1.7703e+00	b(neutronInelastic)	Sensitive	0	1
1993	Si28	1.054e-03	14	28	3	1	3.6548e-01	b(neutronInelastic)	Bulk	1.9489e-01	1
1993	gamma	1.054e-03	0	0	4	1	3.2000e+00	b(neutronInelastic)	Bulk	0	1
1993	gamma	1.054e-03	Θ	0	5	1	1.7790e+00	b(neutronInelastic)	Bulk	0	1
1993	g(gamma)	nan	Θ	0	-1	nan	nan	b(neutronInelastic)	Bulk	0	1
2044	Si28	1.072e-03	14	28	2	1	7.3092e-02	b(hadElastic)	Bulk	0	1
2176	proton	1.066e-03	1	1	2	1	3.3008e+00	b(neutronInelastic)	Sensitive	4.8202e-03	1
2176	Al28	1.066e-03	13	28	3	1	7.5380e-01	b(neutronInelastic)	Sensitive	4.1540e-02	1
2176	g(gamma)	nan	0	0	-1	nan	nan	b(neutronInelastic)	Sensitive	0	1
2559	proton	1.063e-03	1	1	2	1	2.6926e+00	b(neutronInelastic)	Sensitive	2.4314e-03	1
2559	Al28	1.063e-03	13	28	3	1	3.8967e-01	b(neutronInelastic)	Sensitive	8.7722e-02	1
2559	gamma	1.063e-03	0	0	4	1	9.8268e-01	b(neutronInelastic)	Sensitive	0	1
2559	g(e-)	nan	Θ	0	-1	nan	nan	hIoni		3.9645e-03	3
2559	g(gamma)	nan	Θ	0	-2	nan	nan	b(neutronInelastic)	Sensitive	0	1
								· · · · · · · · · · · · · · · · · · ·			

- 'Hits_tN.out' detailed scoring output file containing information of individual particles (or particle groups if grouped, in case of e⁻, e⁺ and γ)
- Further processing and analysis needed (such a postprocessing python script to be added to a future G4SEE release)

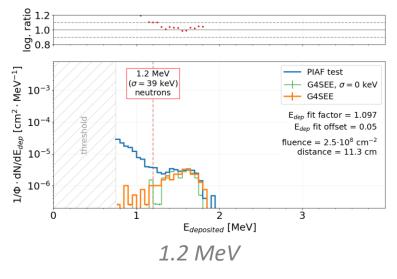

Tutorial files in GitLab
Tutorial files in CERNbox

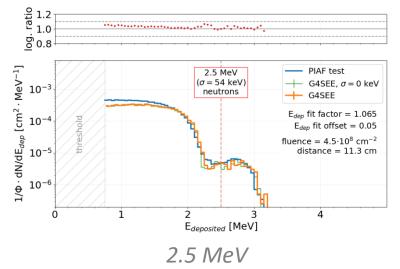

Validation of G4SEE with neutrons [1]

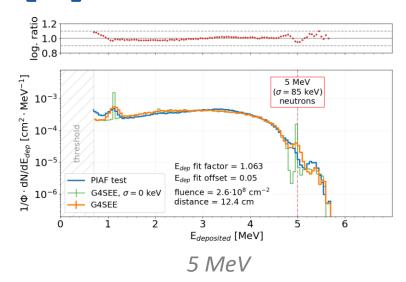


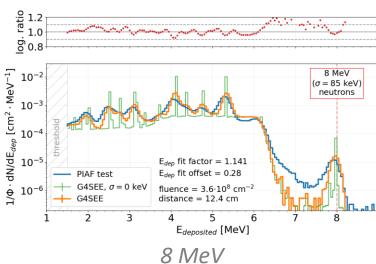
Silicon diode detector $(2cm \times 2cm \times 300 \mu m)$

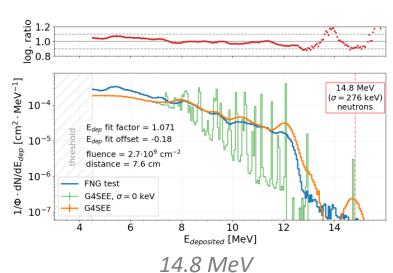
Diode setup irradiated at PTB Ion Accelerator Facility (PIAF)

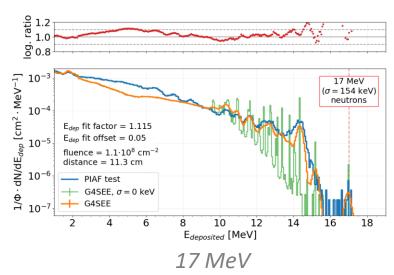


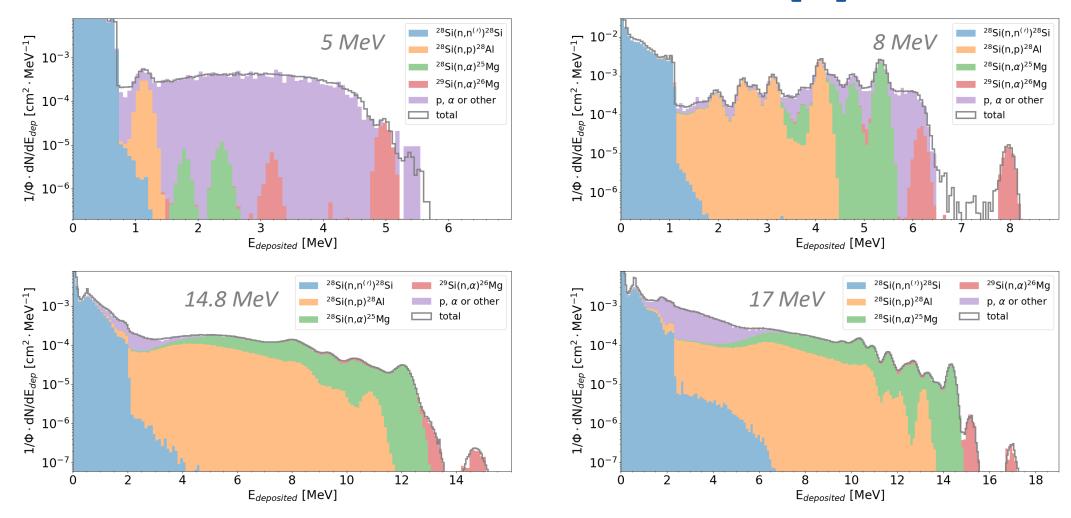



Diode setup irradiated at Frascati Neutron Generator (FNG)




Validation of G4SEE with neutrons [1]





Validation of G4SEE with neutrons [1]

Contribution of the most frequent nuclear reactions to energy deposition distributions of monoenergetic neutrons in Silicon diode detector

Thank you for your attention!

Questions?

If you have further questions, need more help, or you are interested in contributing to the G4SEE toolkit, please let us know!

g4see.toolkit@cern.ch