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▶ In order to increase the fidelity of outputs of a quantum circuit, some considerations need
to be taken into account:

– Quantum circuits are implemented by real quantum processors with physical
limitations. These limitations may include a specific, fixed chip topology, or the
existence of a preferred set of quantum gates

– Given a quantum circuit, in general it is NP-hard to find the shortest equivalent
circuit. Circuit length is specially important for NISQ processors. This problem can
approximately solved by using heuristic optimisers

Some context



Fast-Start – CERN

4

▶ We will discuss 3 kinds of circuit optimizer:

– NNizer: Taking as input a quantum circuit and a restricted connectivity
graph, it recasts the circuit taking into account the processor topology

– PBO: It allows to find specific patterns in a circuit and replace them by an
equivalent user-defined gate. This can be useful when some gates can be 
implemented natively faster (or at higher fidelities) than others in a given
architecture

– GraphOpt: It takes a circuit as input and tries to find a shorter equivalent
circuit by performing a local search in the space of unitaries

Optimizers
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Optimization NNizer

Quantum Circuits Topology Optimizer
General description

▶ Depending on the hardware implementation of the qubits, topology constraints 
for Nearest Neighbors may apply

▶ The NNIZER can be provided with any constraint described by the user. It can 
then observe the input circuit and perform the necessary changes to allow the 
run using the given constraints
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Optimization NNizer

Quantum Circuits Topology Optimizer
NNizer workflow

NNIZER
Topology constraint 

solver

OPTIMIZATION

User input1: Quantum circuit User input2: Constraint
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NNIZER optimizer
Topology & HardwareSpecs

from qat.core import Topology

My_topology=Topology()

for i, j in [(0, 1), (1, 2), (2, 3),(3, 4)]:
my_topology.add_edge(i, j)

from qat.core import HardwareSpecs

My_hardware = HardwareSpecs(nbqbits=5,
topology=my_topology)

q0 q1 q2

q3 q4



Fast-Start – CERN

9
9

NNIZER optimizer
Topology & HardwareSpecs

from qat.core import Topology, TopologyType, HardwareSpecs

My_hardware = HardwareSpecs(nbqbits=5, 
topology=Topology(type=TopologyType.LNN))

q0 q1 q2

q3 q4

▶ Another way:
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NNIZER optimizer
QuameleonPlugin

from qat.core import QuameleonPlugin
from qat.qpus import LinAlg

qpu = QuameleonPlugin(specs=My_ hardware) | LinAlg()

▶ QuameleonPlugin adds contraints coming from the hardware specification 
created previously.

▶ Only compliant circuit will be executed with this stack.
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NNIZER optimizer
in the stack

from qat.core import QuameleonPlugin
from qat.qpus import LinAlg

qpu = QuameleonPlugin(specs=My_ hardware) | LinAlg()

from qat.plugins import Nnizer

final_stack = Nnizer() | qpu

result = final_stack.submit(job)

▶ Adding the Nnizer plugin to the stack will solve the issue by modifying the circuit 
accordingly to the topology.
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▶ Example of json file to be passed as argument

▶ Topology can be directional (i.e for CNOT)

NNIZER optimizer
topology options 

{"edges": {"0": [1],
"1": [0, 2], 
"2": [1, 3], 
"3": [2, 4],
"4": [3]}

12

q0 q1 q2

q3 q4
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▶ Few methods are implemented in Nnize to solve the swap insertion 
problem:

– atos: based on a strict generalization of the algorithm described in An 
Efficient Method to Convert Arbitrary Quantum Circuits to Ones on a 
Linear Nearest Neighbor Architecture by Hirata and al.

– sabre: implementation of Tackling the Qubit Mapping Problem for 
NISQ-Era Quantum Devices by Gushu Li, Yufei Ding and Yuan Xie

– bka: implementation of Efficient mapping of quantum circuits to the 
IBM QX architectures by Alwin Zulehner, Alexandru Paler and Robert 
Wille

– pbn: based on a strict generalization of the algorithm described
in Synthesis of quantum circuits for linear nearest neighbor
architectures by Mehdi Saeedi, Robert Wille and Rolf Drechsler

NNIZER optimizer
topology options 

13

https://ieeexplore.ieee.org/document/4782917
https://dl.acm.org/citation.cfm?id=3304023
https://ieeexplore.ieee.org/document/8342181
https://link.springer.com/article/10.1007/s11128-010-0201-2
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NNIZER optimizer
compile method

14

from qat.plugins import Nnizer
from qat.core import Batch

nnizer = Nnizer(method="atos")

nnized_batch = nnizer.compile(Batch(jobs=[ansatz]),
my_hardware)

nnized_ansatz_circuit = nnized_batch.jobs[0].circuit

#Number of gates in the circuit
len(nnized_ansatz_circuit.ops)

#List of the qubits
nnized_batch.jobs[0].qubits
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▶ We will discuss 3 kinds of circuit optimizer:

– NNizer: Taking as input a quantum circuit and a restricted connectivity
graph, it recasts the circuit taking into account the processor topology

– PBO: It allows to find specific patterns in a circuit and replace them by an
equivalent user-defined pattern. This can be useful when some gates can be 
implemented natively faster (or at higher fidelities) than others in a given
architecture

– GraphOpt: It takes a circuit as input and tries to find a shorter equivalent
circuit by performing a local search in the space of unitaries

Optimizers
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Pattern-based optimizer
To re-write gates

CNOT->H+CZ+H

PBO
Pattern Based 

Optimizer

OPTIMIZATION

User-defined rules set

input circuit

16

Optimization PBO
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Pattern-based optimizer
To detect redundant computation

CNOT + CNOT -> Id
H + H -> Id

PBO
Pattern Based 

Optimizer

OPTIMIZATION

User-defined rules set

input circuit

17

Optimization PBO
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Pattern based optimizer
Example

from qat.lang.AQASM import Program, H, X

# Define initial circuit (X - H - H circuit)
prog = Program()
qubit = prog.qalloc(1)
prog.apply(X, qubit)
prog.apply(H, qubit)
prog.apply(H, qubit)
circ = prog.to_circ()
%qatdisplay circ
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Pattern based optimizer
Example

from qat.pbo import GraphCircuit

# Create a graph object and load circuit
graph = GraphCircuit()
graph.load_circuit(circ)
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Pattern based optimizer
Example

from qat.pbo import GraphCircuit

# Create a graph object and load circuit
graph = GraphCircuit()
graph.load_circuit(circ)

# Define two patterns
left_pattern = [("H", [0]), ("H", [0])]
right_pattern = []
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Pattern based optimizer
Example

from qat.pbo import GraphCircuit

# Create a graph object and load circuit
graph = GraphCircuit()
graph.load_circuit(circ)

# Define two patterns
left_pattern = [("H", [0]), ("H", [0])]
right_pattern = []

# Replace left_pattern by right_pattern
graph.replace_pattern(left_pattern, right_pattern)
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Pattern based optimizer
Example

from qat.pbo import GraphCircuit

# Create a graph object and load circuit
graph = GraphCircuit()
graph.load_circuit(circ)

# Define two patterns
left_pattern = [("H", [0]), ("H", [0])]
right_pattern = []

# Replace left_pattern by right_pattern
graph.replace_pattern(left_pattern, right_pattern)

while graph.replace_pattern(left_pattern, right_pattern):
continue



Fast-Start – CERN

23
23

Pattern based optimizer
Example

from qat.pbo import GraphCircuit

# Create a graph object and load circuit
graph = GraphCircuit()
graph.load_circuit(circ)

# Define two patterns
left_pattern = [("H", [0]), ("H", [0])]
right_pattern = []

# Replace left_pattern by right_pattern
graph.replace_pattern(left_pattern, right_pattern)

while graph.replace_pattern(left_pattern, right_pattern):
continue

# Get the optimized circuit
optimized_circ = graph.to_circ()
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Pattern based optimizer
Abstract gates

# graph.to_circ() won't work since "HZ" gate is not known

from qat.lang.AQASM import AbstractGate
graph.add_abstract_gate(AbstractGate("HZ", [], 1))

# graph.to_circ() is now working
optimized_circ = graph.to_circ()
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▶ We will discuss 3 kinds of circuit optimizer:

– NNizer: Taking as input a quantum circuit and a restricted connectivity
graph, it recasts the circuit taking into account the processor topology

– PBO: It allows to find specific patterns in a circuit and replace them by an
equivalent user-defined gate. This can be useful when some gates can be 
implemented natively faster (or at higher fidelities) than others in a given
architecture

– GraphOpt: It takes a circuit as input and tries to find a shorter equivalent
circuit by performing a local search in the space of unitaries

Optimizers
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▶ The main goal of GraphOpt reduce the total number of gates among

– H, CNOT, X

– Rz/Ph

These gates represent a set typically available in real quantum hardware implementations.

▶ A preprocessing step has been included in our implementation that splits CPh, CRz and Toffoli
gates into subcircuit in the adequate gate set.

▶ It is inspired by the result:

GraphOpt
Description
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GraphOpt
To optimize circuits

GRAPHOPT

OPTIMIZATION

input circuit

27

Optimization GraphOpt
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▶ First step: expand the circuit using only the set of gates. This leads to an increase of the number
of gates

▶ Second step: optimize the circuit to reduce the number of gate after expansion

GraphOpt
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▶ More than 30% of supressed gates for # qubits < 100 ! (after expansion)

GraphOpt

0.0%

5.0%

10.0%

15.0%

20.0%

25.0%

30.0%

35.0%

40.0%

0 100 200 300 400 500 600

%
 o

f 
s
u

p
r
e
s
s
e
d

g
a
te

s

Number of qubits

Fraction of supressed gates while optimizing 
Adder (sum of 2 qubits register)



Fast-Start – CERN

30
30

GraphOpt

from qat.plugins import Graphopt
# from qat.graphopt import Graphopt # Equivalently

my_stack = Graphopt() | LinAlg()

my_stack.submit(job)



Fast-Start – CERN

31
31

GraphOpt

from qat.plugins import Graphopt
# from qat.graphopt import Graphopt # Equivalently

my_stack = Graphopt() | LinAlg()

my_stack.submit(job)
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Hands-on 8: Optimizers

▶ Log on the QLM

▶ Go to Hands-on 8 directory : 

http://127.0.0.1:8888/tree/notebooks/Hands-on8

▶ Open and complete the notebook Optimising-QAOA.ipynb

http://127.0.0.1:8888/tree/notebooks/Hands-on8
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▶ Most quantum algorithms can be implemented by circuits consisting on a fixed sequence of
gates.

▶ Noise can be thought of as introducing random gates in a particular circuit. The nature of
these gates depends on the source of noise.

– The quantum advantage gets slightly modified if noise is very small, but can be
destroyed if noise is too large or if circuits are too long. Information about this will be
contained in the hardware specifications.

▶ The way to fight noise is to implement quantum error correction. This is out of reach for
NISQ processors. In this case, postprocessing techniques may be used to undo the effects
of noise for a particular task.

The Problem of Noise
How Quantum and Classical Fluctuations affect QC
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▶ A discrete description of the temporal evolution of a noisy circuit.

▶ Starting from a perfect quantum circuit, we build a noisy quantum circuit:

– By specifying the meaning of gates

– By potentially adding new operations that describe the effect of noise (for e.g. 
the effect of noise during “idling” periods).

▶ The resulting circuit is made up of “boxes”, each of which describes an action on 
the density matrix of the qubits

The Problem of Noise
On the QLM
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▶ Using a clean circuit and a hardware specification, the Atos QLM generates a noisy circuit object:

Noisy Circuit Generation
From Noiseless to Noisy Circuits
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Noisy quantum simulation
Overview

Hardware
Circuit

(assume native gateset already)
Gate specs Environment

Noisy circuit

Dedicated simulator
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▶ The notion of “noise model” refers to the action of the gates and the
environment on the qubits’ density matrix ρ.

▶ There are several ways to describe such noise models.

▶ The only common property is that they represent a linear map.

▶ They sometimes come with extra properties such as trace preservation (TP) 
and complete positivity (CP).

▶ When these two properties are fulfilled, one can speak of CPTP maps, 
or quantum channels.

Noise models
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QuantumChannelKraus
Example

import numpy as np
from qat.quops import QuantumChannelKraus

H_mat = np.array([[1, 1], [1, -1]])/np.sqrt(2)
p = 0.2
noisy_H = QuantumChannelKraus(

kraus_operators=[np.sqrt(1-p)*H_mat,
np.sqrt(p)*np.identity(2)],
name="noisy identity")

You can define Quantum Channel with
a Kraus representation.

In that example, roughly speaking:
80% of the time the Hadamard
gate will be applied correctly.

20% of the time nothing will be
applied.
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Mathematical Description of Noisy Channels
Kraus Representation

Generic mathematical description for quantum processes
(imperfect gates, environmental noise…)
completely positive, trace-preserving maps:

ℰ 𝜌 = ෍

𝑘=1…𝐾

𝐸𝑘𝜌𝐸𝑘
†

with 𝜌: density matrix

𝐸𝑘: Kraus operators, with property: σ𝑘𝐸𝑘
† 𝐸𝑘 = 1

“Ideal” gate: special case  K = 1, 𝐸1 = 𝑈 unitary matrix
Pure state: special case 𝜌 = 𝜓 〈𝜓|
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Mathematical Description of Noisy Channels
Kraus Representation

Kraus operators can depend on some parameter t

𝐸𝑘 → 𝐸𝑘(𝑡)

Use case: modelling idle noise since the idle times of a qubit can vary
during the circuit execution.
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▶ Noise models depend on the nature of the physical architecture. Some factors to take into account
are the temperature of operation, the lifetime of qubits and the quality of applied gates.
Classical noise can be modeled as bit-flips, ie. apply the Pauli X operator with a probability p:

𝜌 = 𝜓 𝜓 ⟶ ℰ𝑐𝑙𝑎𝑠𝑠𝑖𝑐𝑎𝑙 𝜌 = 1 − 𝑝 𝜌 + 𝑝𝑋𝜌𝑋

▶ Typical Quantum Noise Channels include:

– Amplitude Damping: This arises when qubits loose their energy to the environment

– Phase Damping: This is due to quantum processes which do not imply energy transfer

Some Noise Models
Noise depends on architecture
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Noisy Circuit Generation
Structure

Gates
specification

Gate
noise

Idle
noise

list of Parametric Quantum Channel
(opt.: qubit associated)

dict of Parametric Quantum Channel
associated to each gate

gate_times

dict of QuantumChannelKraus (parametric or not) 
associated to each gate 
(opt.: qubit associated)
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Noisy quantum simulation
Overview

Hardware
Circuit

(assume native gateset already)
Gate specs Environment

Noisy circuit

Dedicated simulator
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Noisy Circuit Generation
Example: Gates

▶ The definition of gates consists of the specification of (i) duration and (ii) Kraus operators:

Duration

Operator definition
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▶ An environment model consists of a user-defined noise for gates (in this example it is 
obviated) and environment (applied to qubits when idle)

Noisy Circuit Generation
Example: Environment Modeling

Effect of
environment

No noise to be
introduced after
each gate
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Noisy quantum simulation
Overview

Hardware
Circuit

(assume native gateset already)
Gate specs Environment

Noisy circuit

Dedicated simulator
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▶ Deterministic simulation of the matrix evolution

• Advantages: returns the full density matrix after evolution

• Drawbacks: resource-intensive. Subject to discretization error

▶ Stochastic sampling of trajectories

• Advantages: less resource consuming. Not subject to discretization error

• Drawbacks: provides estimates of the expectation values. Storage exponential on number 
of trajectories

Noisy Circuit Simulators
Two Approaches for Noisy Circuit Simulation
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a noisy qpu is a pair of 
(hardware model, 
simulator method)

2 types of noisy
simulators

the task can then be executed as usual

Noisy Circuit Simulators
Example
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▶ Density matrix simulation is a costly deterministic method. It is limited to few qubits.

▶ To reach large number of qubits: Monte-Carlo methods i.e stochastic sampling:

• number of samples (hence accuracy) is defined by user

• The error corresponds to the error bar on the probability, evolving like 
1/sqrt(nb_samples)

• You can also specify the backend simulator (linalg, MPS, Feynman) 

▶ Note that contrary to ideal circuit simulators, we do not have access to the quantum
amplitudes, but merely the probabilities.

Noisy Circuit Simulators
Summing Up
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Hands-on 9: noisy simulation

▶ Log on the QLM

▶ Go to Hands-on 9 directory : 

http://127.0.0.1:8888/tree/notebooks/Hands-on9

▶ Open and complete the notebook Noisy-QAOA.ipynb

http://127.0.0.1:8888/tree/notebooks/Hands-on9
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Simulation Linalg

Quantum Circuits Simulation
Linalg

Based on linear algebra. N qubits represented by a 2𝑁vector. Heavy load on 
memory bandwidth and memory access latency. 

▶ general purpose simulator, any gate, any arity

▶ linear simulation time in function of number of gates

▶ Predictable run-time and memory usage

▶ Access to entire amplitude vector

▶ Memory usage: 2𝑁

▶ Execution time grows exponentially with number of qubits
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Simulation Feynman

Quantum Circuits Simulation
Feynman

Based on Feynman path integral. Computes all final reachable states and sums the 
contributions of each path.

▶ Depending on the number of “touched” states,

memory usage can be very low.

▶ Fast for circuits with few dense gates

▶ Any gate up to arity 3

▶ Run-time exponential in the number of dense gates (like Hadamard)
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Simulation MPS

Quantum Circuits Simulation
MPS

Based on Matrix product states representation

▶ MPS is suited to simulate circuit with low entanglement

▶ Simulation time and memory size depend on circuit entanglement. 

▶ For low/medium entangled circuit, low memory usage, fast simulation

▶ Up to 1000 qubits could be simulated with low entanglement.  

▶ Cutoff threshold on Schmidt coefficients can be specified 

▶ Limited to gates with at most arity 3

▶ Only accepts gates acting on neighbouring qubits. Circuit need to be nnized
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Simulation Stabs

Quantum Circuits Simulation
Stabs

Based on stabilizer formalism

▶ Allows to simulate a very large number of qubits

▶ Very efficient simulation of Clifford circuits

▶ Restricted available gates: CNOT,H,CZ,S,X,Y,Z,SWAP

(gate T and Toffoli not accepted)

▶ Amplitudes are only determined up to a global phase
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Based on QMDDs (Quantum Multi-valued Decision Diagrams)

Use cases: 

▶ Shor, especially Toffoli-based arithmetics

▶ circuits containing “a lot of 0,1-valued unitaries” tend to behave well on QMDDs

▶ gates need to act on neighboring qubits, except for controls, which can 
be taken arbitrarily far from the gate application.

▶ Accepts any gate, with arbitrary arity (but connectivity restrictions)

▶ Allow to simulate more qubits than linalg

Simulation BDD

Quantum Circuits Simulation
Binary Decision Diagrams
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Hands-on 10: Simulators

▶ Log on the QLM

▶ Go to Hands-on10 directory : 

http://127.0.0.1:8888/tree/notebooks/Hands-on10

▶ Open and complete the notebook Simulators.ipynb

http://127.0.0.1:8888/tree/notebooks/Hands-on10
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Thank you. 

Gaëtan Rubez

Quantum Computing Expert for the CEPP

gaetan.rubez@atos.net


