Study of plasma meniscus including the surface produced negative ions by using PIC-MCC simulation

K. Miyamoto ${ }^{\text {a }}$, K. Hayashi ${ }^{\text {b) }}$, K. Hoshino ${ }^{\text {b) }}$, and A. Hatayama ${ }^{\text {b) }}$
a) Naruto University of Education
b) Faculty of Science and Technology, Keio University

Contents

1. Introduction
-Relation between shape of plasma meniscus and ion beam optics
2. Analytical theory of the effective distance $d_{\text {eff }}$ between plasma meniscus and extraction electrode

- It is shown that the effective distance $\boldsymbol{d}_{\text {eff }}$ depends on electro-negativity $\boldsymbol{n}_{\mathbf{H}} / \boldsymbol{n}_{\mathbf{e}}$, plasma density, and so on.

3. 3D PIC-MCC simulation model

- Integrated model (source plasma, extraction region, and accelerator)
- Physical processes (surface production, various collision processes of H^{-}ions)

4. Simulation results

- Dependence of the effective distance $\boldsymbol{d}_{\text {eff }}$ on the electro-negativity $\boldsymbol{n}_{\mathrm{H}} / \boldsymbol{n}_{\mathrm{e}}$
- Dependence of H^{-}ion beam optics on the plasma density

5. Summary and future plan

It is essential for a hydrogen negative ion source to generate the negative ion beams with good beam optics as well as with the high current density. For example, a negative ion beamlet with a divergence angle of $3 \sim 7 \mathrm{mrad}$ is required for the negative ion source in the negative ion based NBI for ITER [1, 2].

If the negative ion beam divergence angle is large, the negative ion beam will impinge on the acceleration grid and other components during beam acceleration and transport, and then causes the heat loads, loss of the negative ion beam current, and break down of voltage holding due to the resultant secondary electrons.

Therefore, the negative ion beam optics has been studied intensively in development of the hydrogen negative ion sources. In general, an ion beam optics depends on the shape of plasma meniscus, which is an ion emitting surface.

[^0]
$\underline{\text { Relation between shape of plasma meniscus and ion beam optics }}$

Control of effective distance $d_{\text {eff }}$ between the Plasma Grid (PG) and the Extraction Grid (EG) (or equivalently the position of the plasma meniscus) is very important to obtain good beam quality.
d : geometrical distance between PG and EG

PG EG

$$
d_{e f f}=d
$$

Plasma meniscus:flat
Extracted ion beam: parallel
Optimum perveance

$$
d_{e f f}<d
$$

Plasma meniscus : Convex \square comes out towards the EG

Extracted beams : diverged

Low plasma density
PG EG

Plasma meniscus: Concave 凹 penetrates into the source region Extracted beams: over-focused

- What are the key parameters to determine/control $\boldsymbol{d}_{\text {eff }}$?

- How $d_{\text {eff }}$ depends on these key parameters?
- How to control the plasma meniscus?

For ordinary plasmas with single positive ions and electrons: well-known simple theory tells us:

$$
\mathrm{d}_{\mathrm{eff}}=\frac{2^{5 / 4}}{3} \exp \left(\frac{1}{4}\right)\left(\frac{\varepsilon_{0}}{e}\right)^{1 / 2} n_{\mathrm{p}}^{-1 / 2}\left(\frac{k T_{\mathrm{e}}}{e}\right)^{-1 / 4} V_{e x t}^{3 / 4}
$$

M : mass of a positive ion n_{p} : plasma density
T_{e} : electron temperature $V_{\text {ext }}$: extraction voltage

However, for the electronegative plasma including the surface produced H^{-}ions in the negative ion sources, the key parameters to control the plasma meniscus and the dependence on these parameters are still unclear.

In this study, the plasma meniscus and relevant physical structure such as the sheath in the electronegative plasma including the surface produced H^{-}ions was investigated by using both analytical theory and 3D PIC-MCC simulation.

Analytic theory of the effective distance $d_{\text {eff }}$ including surface produced H^{-}ions

Inside the source plasma

=> Current through the sheath

$$
J_{\mathrm{sat}}=J_{\mathrm{e}}+J_{\mathrm{H}-}
$$

(Saturation current)

Current continuity

Outside the source plasma
(between PG and EG)
=> Total of extracted current

$$
J^{\mathrm{ext}}=J_{\mathrm{e}}{ }^{\mathrm{ext}}+J_{\mathrm{H}-}{ }^{\mathrm{ext}}
$$

(Child-Langmuir current)

Effective distance $d_{\text {eff }}$ between the plasma meniscus and the EG $\left(J_{\text {sat }}=J^{\text {ext }}\right)$

$$
d_{\mathrm{eff}} \propto\left(\frac{M_{\mathrm{i}}}{m_{\mathrm{e}}}\right)^{1 / 4}\left(1+\frac{\sqrt{\frac{M_{\mathrm{n}}}{m_{\mathrm{e}}}}}{\alpha}\right)^{1 / 2} n_{\mathrm{i} 0}^{-1 / 2} V_{\mathrm{ext}}^{3 / 4} \quad \begin{aligned}
& m_{\mathrm{e}}: \text { mass of electron } \\
& M_{\mathrm{i}}: \text { mass of } \mathrm{H}^{+} \text {ion } \\
& M_{\mathrm{n}}: \text { mass of } \mathrm{H}^{-} \text {ion } \\
& n_{\mathrm{i} i}: \mathrm{H}^{+} \text {ion density at the sheath edge } \\
& V_{\mathrm{ext}}: \text { extraction voltage }
\end{aligned}
$$

Electro-negativity

$$
\alpha \equiv \frac{n_{\mathrm{H}-}}{n_{\mathrm{e}}}
$$

α lower $\rightarrow d_{\text {eff }}$ larger : plasma meniscus penetrates deeper into the plasma α higher $\rightarrow d_{\text {eff }}$ smaller : plasma meniscus penetrates shallower into the plasma

Electro-negativity α near the PG is a very important parameter to control $d_{\text {eff }}$ (the plasma meniscus).

3D PIC-MCC simulation model (I)

$x \uparrow \quad 40 \mathrm{~mm}$

3D PIC-MCC simulation model (II)

Physical parameter	Value
Electron temperature	1 eV
Hydrogen ion temperature	$0.3 \mathrm{eV}\left(\mathrm{H}^{+}\right)$
	$0.1 \mathrm{eV}\left(\right.$ (volume produced $\left.\mathrm{H}^{-}\right)$
Electron density	1 eV (surface produced $\left.\mathrm{H}^{-}\right)$
Hydrogen atom temperature	$1.8 \times 10^{17} \mathrm{~m}^{-3}$
Hydrogen molecule temperature	0.3 eV
Hydrogen molecular density	0.1 eV
Density ratio $\mathrm{n}_{\mathrm{H}} / \mathrm{n}_{\mathrm{H} 2}$	$1.88 \times 10^{19} \mathrm{~m}^{-3}(\mathrm{at} 0.3 \mathrm{~Pa})$

In order to investigate the effect of electro-negativity ($\alpha \equiv$ $n_{\mathrm{H}-} / n_{\mathrm{e}}$) on the effective distance $d_{\text {eff }}$, the following numbers of the surface produced H^{-}ion super-particles per timestep were surveyed:

Number of H- particles / time step / process	Surface produced \mathbf{H}^{-} ion flux from PG $\left(\mathbf{A} / \mathbf{m}^{2}\right)$
20	39
60	146
100	255

-The following collisions related to the H^{-}ions are taken into account:
Coulomb collision: $\mathrm{H}^{-}-\mathrm{H}^{+}, \mathrm{H}^{-}-\mathrm{H}^{-}$
Charge exchange collision: H^{-}(fast) +H (slow) $\rightarrow \mathrm{H}^{-}$(slow) +H (fast)
Elastic collision: $\mathrm{H}^{-}-\mathrm{H}, \mathrm{H}^{-}-\mathrm{H}_{2}$
Mutual neutralization: $\mathrm{H}^{+}+\mathrm{H}^{-} \rightarrow \mathrm{H}+\mathrm{H}$

Other simulation conditions

- Initial super-particle numbers:

Electron (8.715×10^{7}), H^{+}ion $\left(1.245 \times 10^{8}\right), \mathrm{H}^{-}$ion $\left(3.735 \times 10^{7}\right)$
10 particles per mesh in average

- Neutral particles $\left(\mathrm{H}, \mathrm{H}_{2}\right)$ are assumed to be the background particles.
- Extraction and acceleration voltage:
$V_{\mathrm{PG}}=0 \mathrm{~V}, V_{\mathrm{ext}}=V_{\mathrm{SG}}=2.7, V_{\mathrm{acc}} / V_{\mathrm{ext}}=22$

Spatial distribution of electron, H^{+}on, and H^{-}ion

$$
J_{\mathrm{H}-}=39 \mathrm{~A} / \mathrm{m}^{2}
$$

- Spatial distributions of electron H^{+}ion, and H^{-}ion densities along the z-axis are compared.
- The ratio $n_{\mathrm{H}-} / n_{\mathrm{e}}$ increases as the flux of surface produced H^{-} particles per time increases.

Potential profile in the sheath

- Sheath potential becomes lower compared with that without the surfaced produced H^{-}ions, which agrees with the experimental results [3, 4].
- Sheath potential decreases with the increase in the surface produced H^{-}ion flux.
- The onset of virtual cathode appears with the increase in the surface produced H^{-}ion flux.

Effect of the ratio $n_{\mathrm{H}-} / n_{\mathrm{e}}$ on the penetration of electric field

- Penetration of electric field for extraction becomes shallower with the increase of ratio n_{H-} / n_{e}.
- For the small ratio $n_{\mathrm{H}_{-}} / n_{\mathrm{e}}$, the surfaced H^{-}ions are extracted directly from the PG surface rather than enter into the bulk plasma.

Contour map of the electrostatic potential near the PG

Comparison of the shape of plasma meniscus

$n_{\mathrm{H}+}$兟

$$
J_{\mathrm{H}-}=255 \mathrm{~A} / \mathrm{m}^{2} \quad
$$

The experimental result in ref. [5] may support the present simulation result that the shape of the plasma meniscus depends on electro-negativity α.

[5] Kisaki M, Ikeda K, Nakano H, Tsumori K, Fujiwara Y, Haba Y, Kamio S, Nagoka K, Osakabe M 2018 Plasma Fusion Res. 131205110.

Effect of the ratio $n_{\mathrm{H}-} / n_{\mathrm{e}}$ on the beam optics

Emittance diagram at the location of 30 mm from the exit of GG

Comparison of emittance diagram for low α and high α

- The H^{-}ions extracted from the edge of plasma meniscus become more pronounced for the low electro-negativity α in the emittance diagram.
- It is verified that the ratio of $n_{\mathrm{H}-} / n_{\mathrm{e}}$ affects the H^{-} ion beam optics.

Summary and future plan

The plasma meniscus and relevant physical structure in the electronegative plasma with the surface produced H^{-}ions was investigated from analytical theory and 3D PIC-MCC simulation. - It is shown that the distance $d_{\text {eff, }}$, between the plasma meniscus and the extraction grid depends on the electro-negativity $\alpha=n_{\mathrm{H}_{-}} / n_{\mathrm{e}}$ as well as the plasma density.

- Especially under the constant plasma density,

$$
\text { Higher } \alpha \rightarrow \text { Smaller } d_{\text {eff }}, \quad \text { while Lower } \alpha \rightarrow \text { Larger } d_{\text {eff }}
$$

- This dependence of the distance $d_{\text {eff }}$ on the electro-negativity α is considered to be caused by the larger space charge effect of the \mathbf{H}^{-}ions, preventing penetration of the electric field for H^{-}extraction into the source plasma.

The future plans for the study of the plasma meniscus and H^{-}ion beam optics are as follows:

1) A systematic comparison with the experimental result
2) Further investigation of the relevant physics of the plasma meniscus, for example

- asymmetry structure of the plasma meniscus
- relationship between extraction mechanism of surface produced H^{-}ions and beam optics

Dependence of shape of plasma meniscus on plasma density(I)

- The charged particle densities $n_{\mathrm{e}}, n_{\mathrm{H}+}$, and $n_{\mathrm{H}-}$ along the z-axis.
- In the simulation, the plasma density was varied by changing the weighting parameter "crho", which correspond to the number of real particles per super-particle of the simulation.
- The plasma density increases with increase in the value of crho.

Dependence of shape of plasma meniscus on

 plasma density (II)- It is verified that he shape of plasma meniscus depends on the plasma density.
- With the increase in the plasma density, the shape of plasma meniscus varies as follows:

$$
\text { concave } 凹 \rightarrow \text { almost flat } \rightarrow \text { convex } 凸
$$

[^0]: [1] Hemsworth S R, Boilson D, Blatchford P, Palma D M, Chitarin G, Esch de L P H, Geli F, Dremel M, Graceffa J, Marcuzzi D 2017 New J. Phys. 19025005.
 [2] M. J. Singh, D. Boilson, A. R. Polevoi, T. Oikawa, and R. Mitteau 2017 New J. Phys. 19055004.

