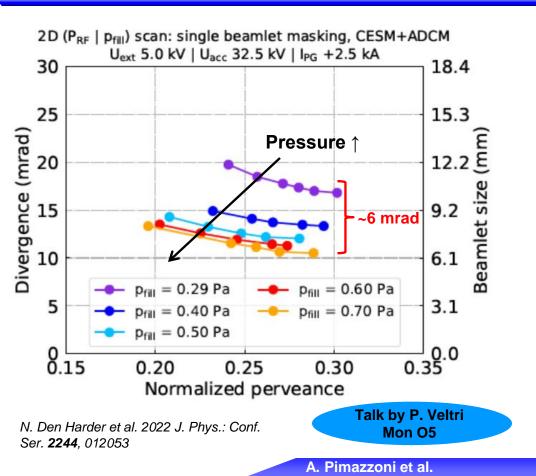


Key parameters for the H⁻ velocity distribution at the plasma meniscus of a caesiated negative ion source

A. Pimazzoni, E. Sartori, G. Serianni and P. Veltri

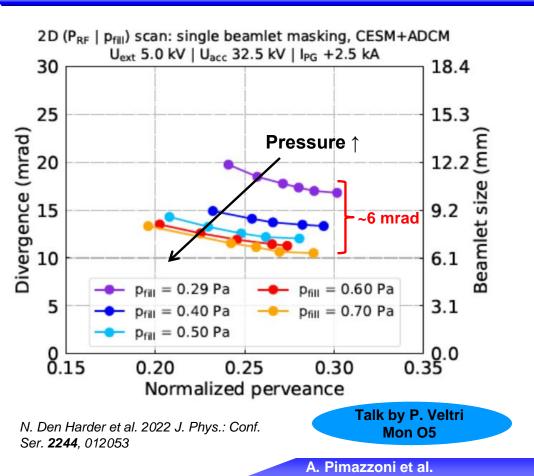
8th International Symposium on Negative Ions, Beams and Sources Padova, Italy, October 2-7, 2022


Motivation

> ICARO: a test particle code w/ Monte Carlo collisions

- Description and comparison with literature
- Investigation of the pressure dependence

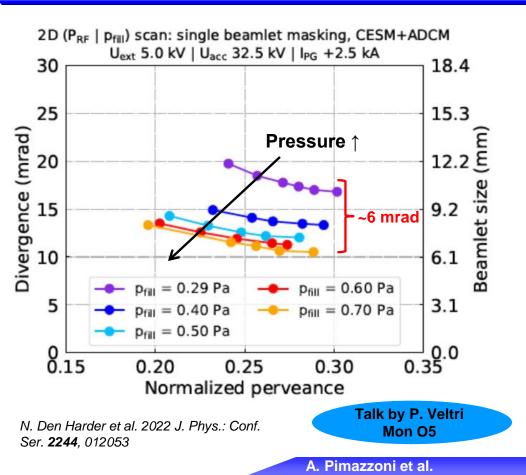
> Coupling of ICARO to a ray tracing code



Experimental evidence

Beam divergence from RF sources under development for the ITER HNB/DNB is highly sensitive to the source filling pressure

$$Div = Div(I_{ex}/U_{ex}^{1.5}, E_{beam}, T_{H})$$


Experimental evidence

Beam divergence from RF sources under development for the ITER HNB/DNB is highly sensitive to the source filling pressure

$$Div = Div(I_{ex}/U_{ex}^{1.5}, E_{beam}, T_{H-})$$

Experimental evidence

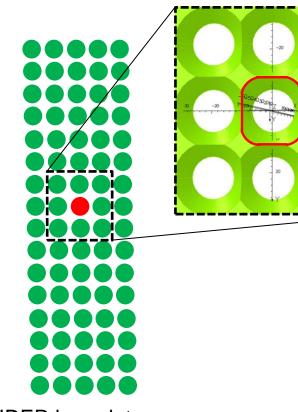
Beam divergence from RF sources under development for the ITER HNB/DNB is highly sensitive to the source filling pressure

$$Div = Div(I_{ex}/U_{ex}^{1.5}, E_{beam}, T_{H})$$

Hypothesis

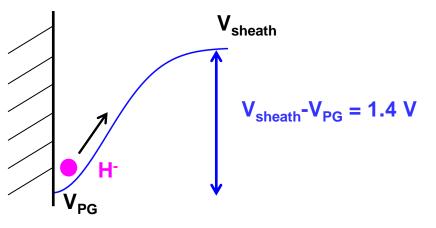
Being perveance and beam energy the same, we can conclude that pressure affects the negative ion velocity distribution at the plasma meniscus *But how?*

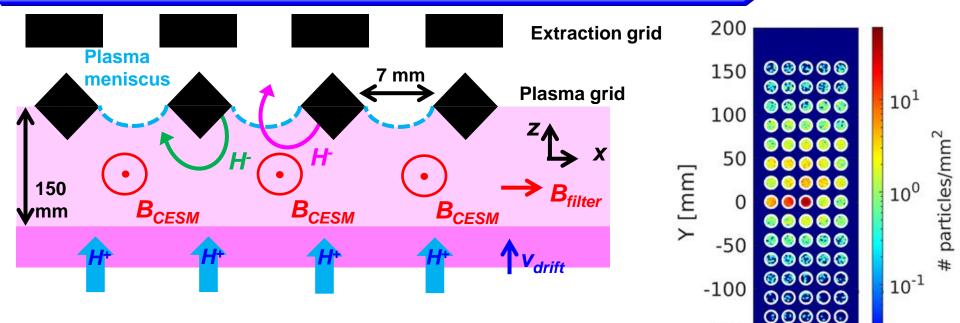
> Motivation


ICARO: a test particle code w/ Monte Carlo collisions Description and comparison with literature

Investigation of the pressure dependence

> Coupling of ICARO to a ray tracing code


ICARO : Plasma domain and particle motion


SPIDER beamlet group: 5x16 apertures

- Emission with a cosine distribution from the upstream chamfered part of the PG (only from the aperture centered in [0,0] mm)
- H⁻ are emitted from the PG with an initial energy that already considers the potential difference V_{sheath}-V_{PG}
 - Virtual cathode is not considered yet

ICARO: Plasma domain and particle motion

- Particles are moved in the magnetic field (CESM=magnets in the EG; Filter field B_{filter}=B_x=2mT)
- > dt is adjusted so to keep ds=0.5 mm at each step
- ➤ The domain length is set to 150 mm

-150

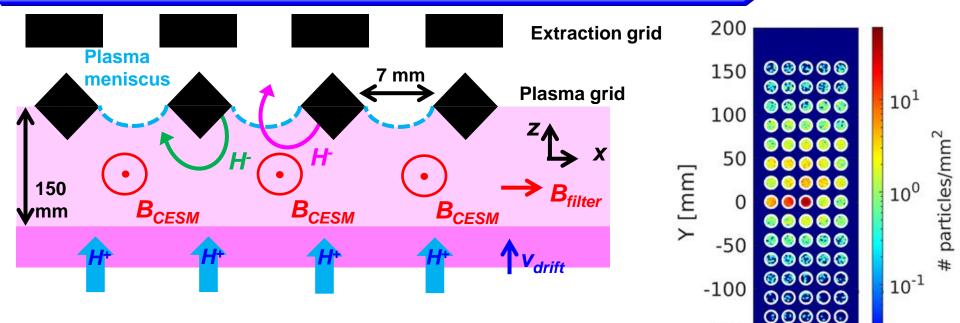
-200

-50

00000

00000

0


X [mm]

50

B_{filter}

ICARO: Plasma domain and particle motion

- Plasma parameters (n_{H+},n_{H-},n_e,T_e,T_{H+},v_{drift}) and gas parameters (n_{H0},n_{H2},T_{H0},T_{H2}) assumed homogeneous
- > Only H⁺ are considered as positive ions
- > Collisions are implemented with Monte Carlo method

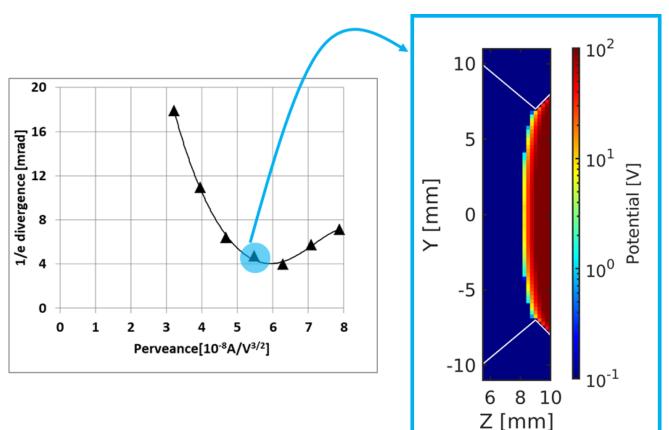
-150

-200

-50

00000

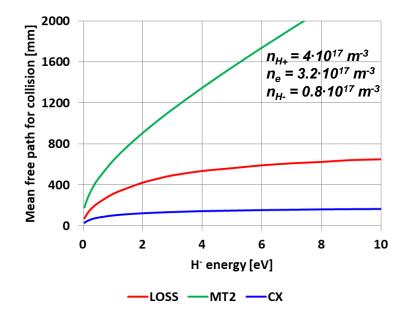
00000


X [mm]

50

B_{filter}

ICARO: Plasma meniscus



- The meniscus surface is loaded from OPERA3D
- Perveance match case (Π=5.5-6.3·10⁻⁸ A/V^{3/2}) are considered; this meniscus is very flat, so that the direct extraction is expected to be very little

ICARO: Collisions

Cross-sections

- C.F. Barnett, Atomic Data for Fusion, Volume 1, (ORNL-6086),1990.

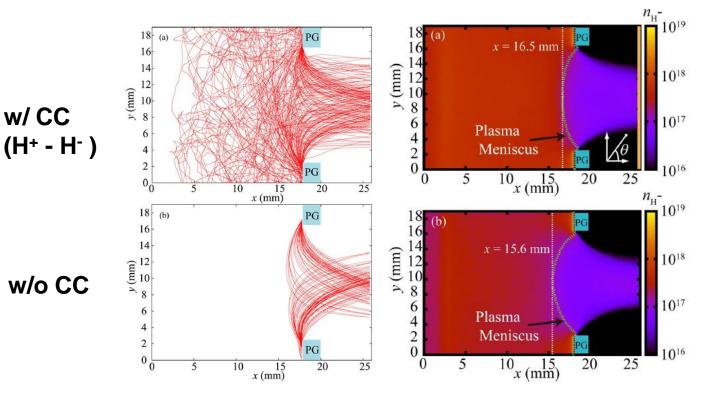
- T. Tabata et al., *Atomic Data and Nuclear Data Tables* **76**, 1–25 (2000) <u>Gas parameters</u>

- U. Fantz at al., Front. Phys. 9:709651 (2021)

CC are treated as in T. Takizuka, H. Abe J. Comput. Phys., 25 (1977)

Momentum transfer w/ plasma CC: $H^- + H^+ \rightarrow H^- + H^+$

Momentum transfer w/ gas CX: $H^- + H_0 \rightarrow H_0 + H^-$ MT2: $H^- + H_2 \rightarrow H^- + H_2$


Neutralization by the plasma DE: $H^- + e^- \rightarrow H + 2e^-$ MN: $H^- + H^+ \rightarrow H_0 + H_0$ AD₊: $H^- + H^+ \rightarrow H_2$

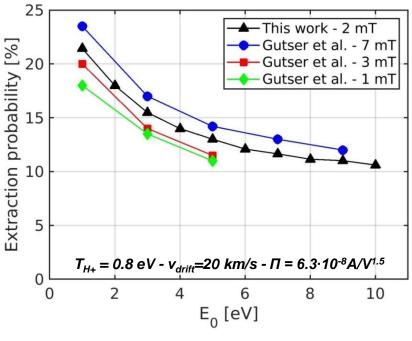
Neutralization by the gas

 $AD_0: H^- + H_0 \rightarrow H_2 + e^ D_2: H^- + H_2 \rightarrow H_0 + H_2 + e^-$

The role of Coulomb collisions (CC)

Coulomb collisions strongly affects the extraction probability and the meniscus.

W/o CC, particles are extracted only through direct extraction → Poor optics


S. Nishioka et al. J Appl. Phys. 123, 063302 (2018)

ICARO: comparison with TP in literature (TrajAn*)

CONSORZIO RFX Ricerca Formazione Innovazione

	R. Gutser et al. *	This work
Т _{н2,1} [К]	1200	630 **
Т _{н2,2} [К]		4600 **
Т _{но,1} [eV]	0.8	0.19 **
Т _{но,2} [eV]		2.5 **
n _{H2,1} [m ⁻³]	4.0·10 ¹⁹	1.0·10 ¹⁹
n _{H2,1} [m ⁻³]		0.5·10 ¹⁹
n _{H0,1} [m ⁻³]	10·10 ¹⁸	2.2·10 ¹⁸
n _{H0,2} [m ⁻³]		2.2·10 ¹⁸
Т _{н+} [eV]	0.8	[0.4,1.6]
v _{drift} [km/s]	0	[10,20]
T _e [eV]	2.0	2.0
n _e [m ⁻³]	5.0·10 ¹⁷	3.2·10 ¹⁷
n _{H+} [m ⁻³]	5.5·10 ¹⁷	4.0·10 ¹⁷
n _{н-} [m ⁻³]	0.5·10 ¹⁷	0.8·10 ¹⁷

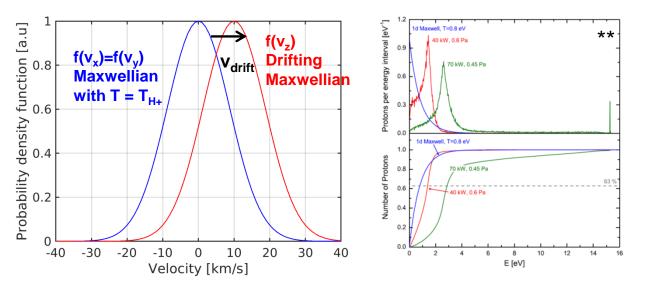
Extraction probability $p_{extr} = \frac{N_{extr}}{N_{tracked}}$

* R. Gutser et al. PPCF **52** (2010) 045017

** U. Fantz at al., Front. Phys. 9:709651 (2021)

A. Pimazzoni et al.

The dependence of the positive ion energy distribution on the source parameters was investigated in SPIDER with a retarding field energy analyzer (RFEA)

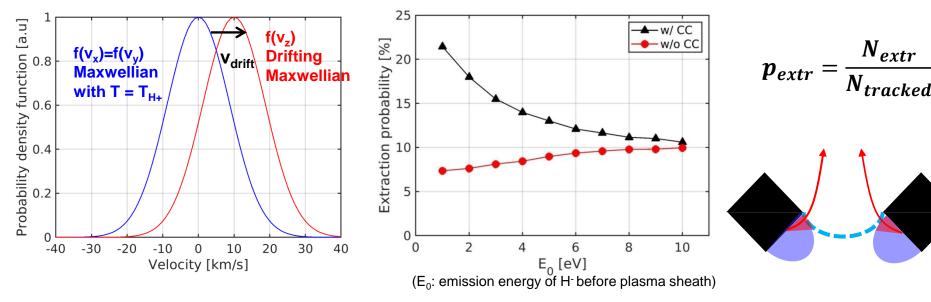

Pressure dependence *RF* power dependence PG float RF power 63kW/driver RF power 30kW/driver RF power 42kW/driver 3.5 0.25 Pa - V_{PG} = 17.6 V 0.34 Pa - V_{PG} = 21.8 V 3 0.46 Pa - V_{PG} = 20.4 V 1.5 2.5 0.65 Pa - V_{PG} = 20.6 V Signal (a.u.) dl/dV_{RIT} (a.u.) 2 1.5 0.5 1 0.5 0 -0.5 -0.5 20 -20 40 20 -20 20 0 20 0 40 0 -80 -60 -40 -20 20 40 60 80 100 V_{RET} (V) $V_{RET}(V)$ $V_{RET}(V)$ $V_{PIT} - V_{PG} [V]$

E. Sartori et al. Fus. Eng. Des. 169 (2021) 112424

A. Pimazzoni et al.

ICARO: Positive ion velocity distribution

@ BATMAN (IPP, Garching) Mach probe: $v_{drift} \sim 10$ km/s for $p_{fill} = 0.7$ Pa* Probes+ MC models: $T_{H+} \sim 0.8$ eV @ PG for $P_{RF} = 40$ kW/dr - $p_{fill} = 0.6$ Pa**

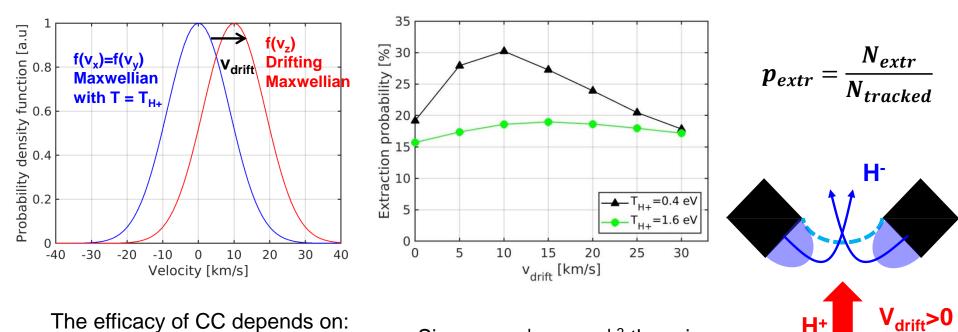

The efficacy of CC depends on:

- Е_{н-}
- n_{H+}
- f(E_{H+}) →T_{H+}, v_{drift}

* *M.* Bandyopadhyay et al. A.J. Appl. Phys. **96**, 4107 (2004) ** *D.* Wuenderlich et al., PPCF**54** (2012) 125002

ICARO: Efficacy of Coulomb Collisions

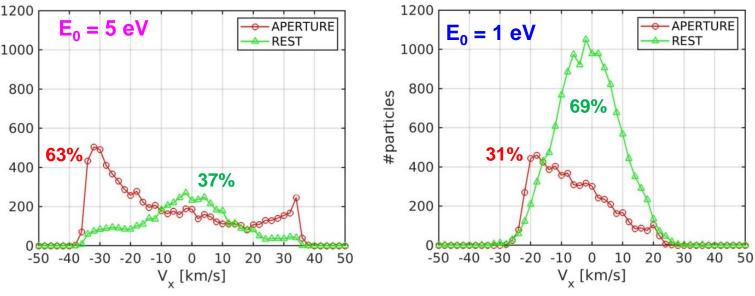
The efficacy of CC depends on:


- E_{H-}
- n_{H+}
- $f(E_{H+}) \rightarrow T_{H+}, v_{drift}$

Since $v_{CC} \sim |v_{H+} - v_{H-}|^{-3}$ CC are more effective for low energy H⁻

ICARO: Efficacy of Coulomb Collisions

The efficacy of CC depends on:


- Е_{н-}
- n_{H+}
- f(E_{H+}) →T_{H+}, v_{drift}

Since $v_{CC} \sim |v_{H+} - v_{H-}|^{-3}$ there is an optimum drift velocity for H⁺ ions. Beyond this velocity, CC lose efficacy

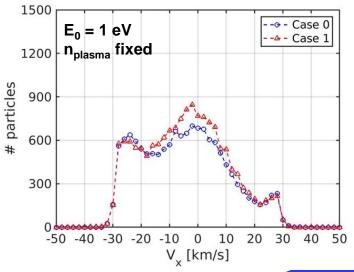
H+

Results: velocity distribution at meniscus

- H⁻ emitted with large energies are unlikely to be brought back to the apertures by collisions and magnetic fields.
- For H⁻ emitted with low energy, CC are effective in reversing the H⁻ velocity

> Motivation

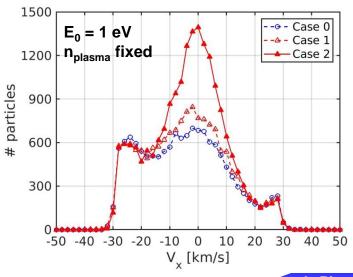
> ICARO: a test particle code w/ Monte Carlo collisions


- Description and comparison with literature
- Investigation of the pressure dependence

> Coupling of ICARO to a ray tracing code

Pressure dependence

	p _{fill} [Pa]	Density of gas species	T _e [eV]	T _{H+} [eV]	v _{drift} [km/s]
Case 0	0.3	n _{standard}	2	0.8	20
Case 1	0.6	2n _{standard}	1	0.8	20

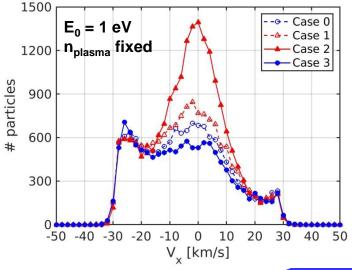

The optics dependence on pressure:

Cannot be explained by the increased gas density in the extraction region (Case 0 vs Case 1)

Pressure dependence

	p _{fill} [Pa]	Density of gas species	T _e [eV]	T _{H+} [eV]	v _{drift} [km/s]
Case 0	0.3	n _{standard}	2	0.8	20
Case 1	0.6	2n _{standard}	1	0.8	20
Case 2	0.6	2n _{standard}	1	0.4	10 *

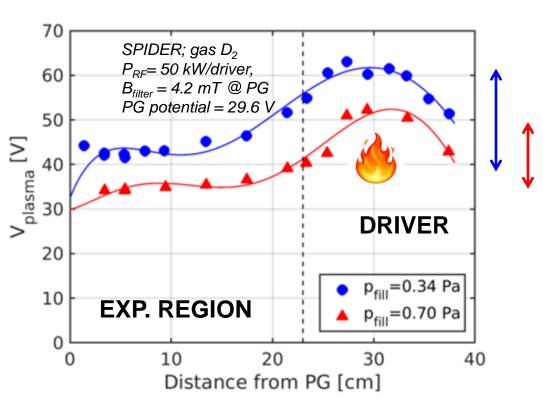
The optics dependence on pressure:


- Cannot be explained by the increased gas density in the extraction region (Case 0 vs Case 1)
- Can be explained by reduced energy of the positive ions (Case 0 vs Case 2)

*M. Bandyopadhyay et al. A.J. Appl. Phys. 96, 4107 (2004)

Pressure dependence

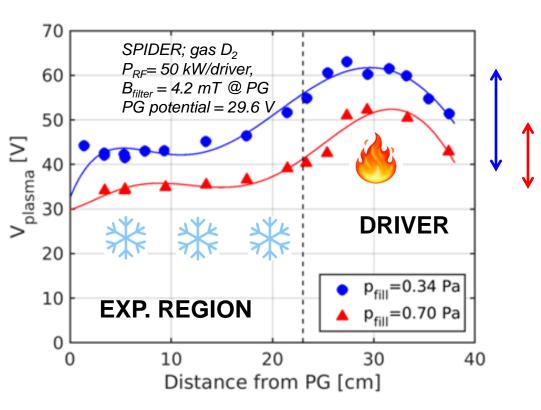
	p _{fill} [Pa]	Density of gas species	T _e [eV]	T _{H+} [eV]	v _{drift} [km/s]
Case 0	0.3	n _{standard}	2	0.8	20
Case 1	0.6	2n _{standard}	1	0.8	20
Case 2	0.6	2n _{standard}	1	0.4	10 *
Case 3	0.3	n _{standard}	2	1.6	20



The effect of pressure is not local, due to MT with neutrals, but global, as pressure affects the whole discharge

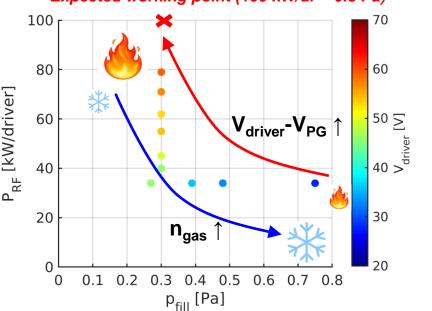
Pressure influences the H⁻ extraction via the positive ion energy distribution (which controls CC efficacy)

Energy balance for positive ions



Energy source term: potential slide between RF drivers and plasma grid

Energy balance for positive ions


Energy source term: potential slide between RF drivers and plasma grid

*

Energy loss term: Collisions with neutrals (H^0, H_2) in the expansion region

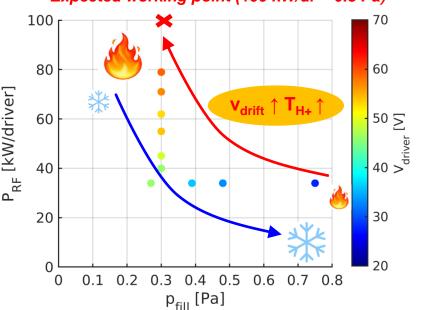
Plasma potential in RF sources

Expected working point (100 kW/dr – 0.3 Pa)

Data are from:

P. McNeely et al., J Appl. Phys. 18 (2009) 014011

 $p_{fill} \le 0.3$ Pa is needed to limit stripping losses We cannot increase the energy loss term for positive ions


 $P_{RF} \sim 100$ kW/driver is needed to assure the target current density (330-355 A/m²) with $p_{fill} = 0.3$ Pa. By increasing P_{RF} :

The energy source term for positive ions would increase The energy loss term would decrease (neutral depletion)

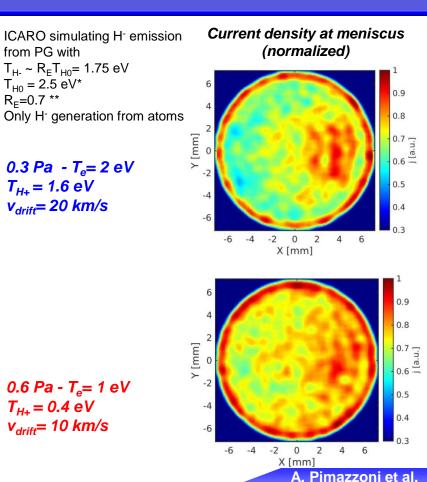
 T_{H+} and v_{drift} are expected to increase

Plasma potential in RF sources

Expected working point (100 kW/dr – 0.3 Pa)

Data are from:

P. McNeely et al., J Appl. Phys. 18 (2009) 014011


 $p_{fill} \le 0.3$ Pa is needed to limit stripping losses We cannot increase the energy loss term for positive ions

 $P_{RF} \sim 100$ kW/driver is needed to assure the target current density (330-355 A/m²) with $p_{fill} = 0.3$ Pa. By increasing P_{RF} :

The energy source term for positive ions would increase The energy loss term would decrease (neutral depletion)

 T_{H+} and v_{drift} are expected to increase

ICARO: emittance at the meniscus

CONSORZIO RFX Ricerca Formazione Innovazione

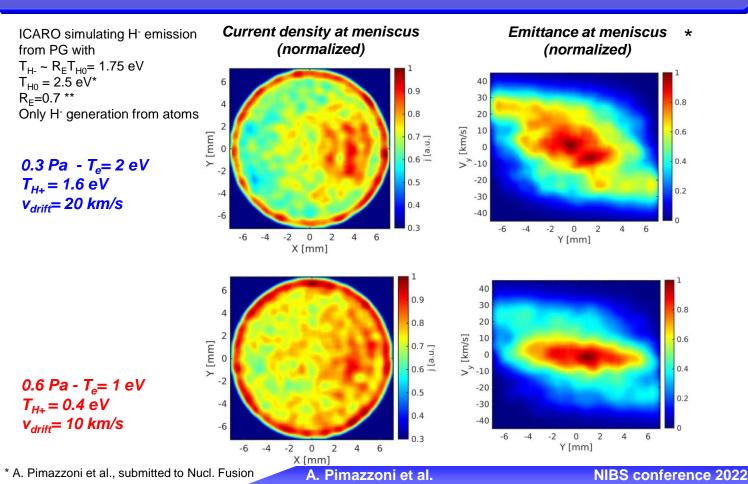
ICARO: emittance at the meniscus

*

0.8

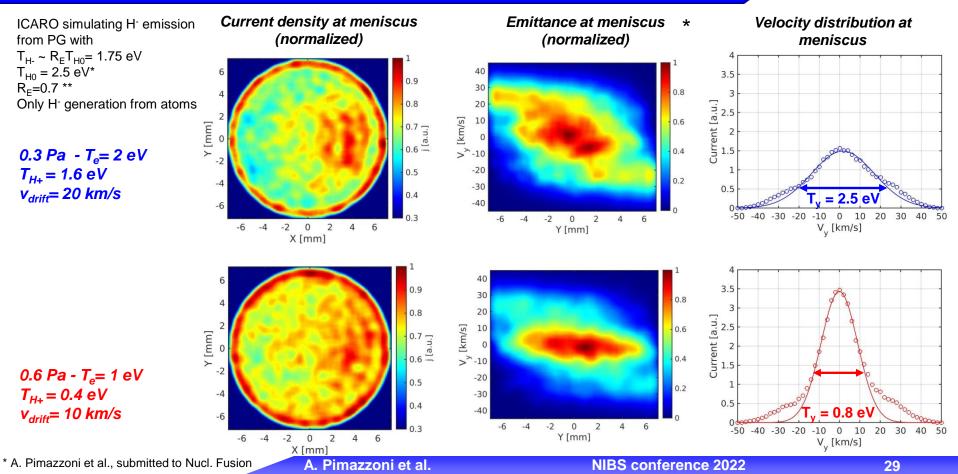
0.6

0.4


0.2

0.8

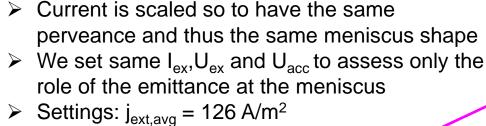
0.6


0.4

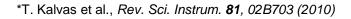
0.2

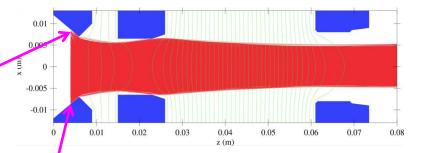
ICARO: emittance at the meniscus

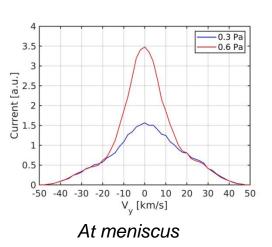
> Motivation

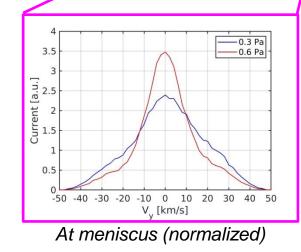

> ICARO: a test particle code w/ Monte Carlo collisions

- Description and comparison with literature
- Investigation of the pressure dependence

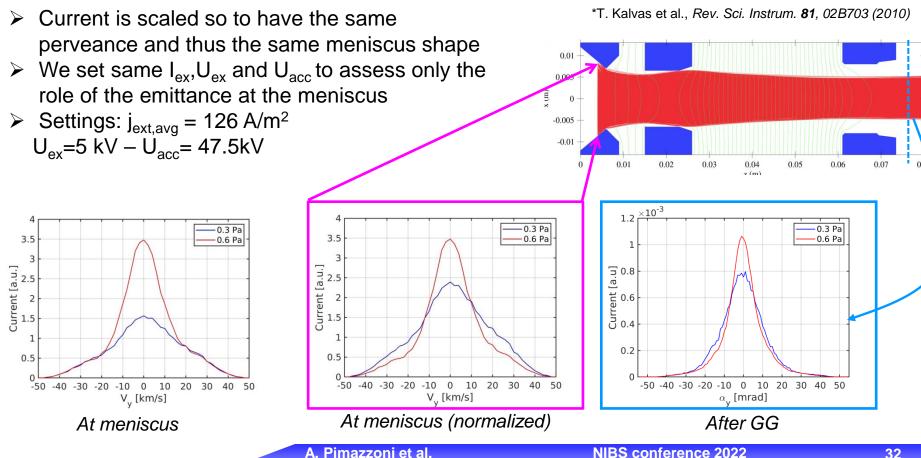

> Coupling of ICARO to a ray tracing code


Coupling with IBsimu*

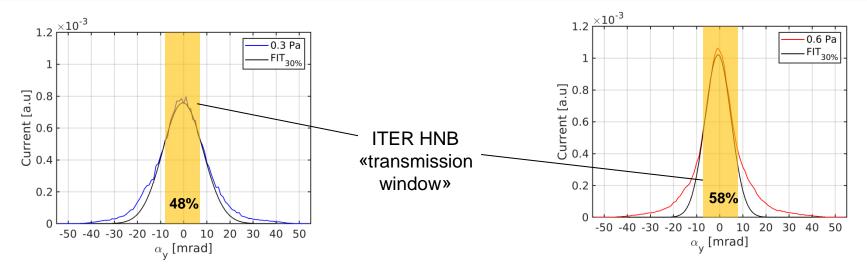




 U_{ex} =5 kV – U_{acc} = 47.5kV

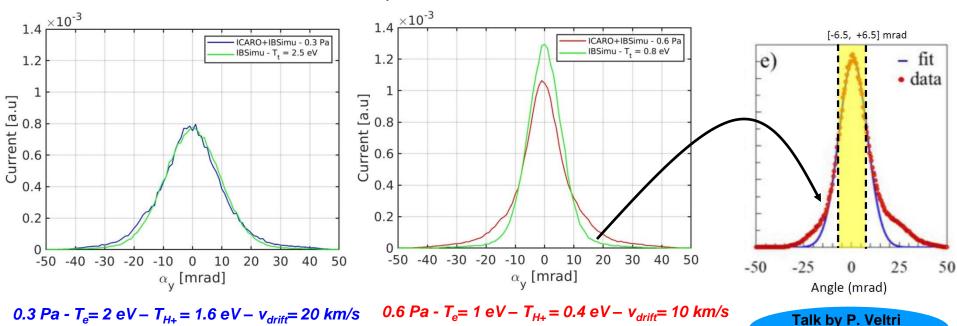


Coupling with IBsimu*



Coupling with IBsimu

P _{fill} [Pa]	n _{H0,1} [10 ¹⁸ m ⁻³]	n _{H0,2} [10 ¹⁸ m ⁻³]	n _{H2,1} [10 ¹⁸ m ⁻³]	n _{H2,2} [10 ¹⁸ m ⁻³]	T _e [eV]	T _{H+} [eV]	V _{drift} [km/s]	div _{30%} [mrad]	Fraction in ITER angular acceptance (-7,7) mrad [%]
0.3	2.2	2.2	10.0	5.0	2	1.6	20	12.3	48
0.6	4.5	4.5	19.9	9.9	1	0.4	10	8.0	58


0.3 Pa -
$$T_e = 2 eV - T_{H+} = 1.6 eV - v_{drift} = 20 km/s$$

0.6 Pa - T_e = 1 eV - T_{H+} = 0.4 eV - v_{drift} = 10 km/s

Comparison with IBsimu

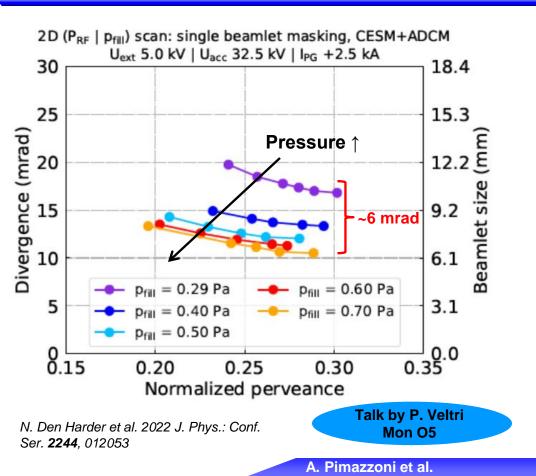
We compare the results by ICARO+IBSimu with the ones of a standard IBSimu run. In the IBsimu standard simulation, we set T_t equal to the estimate by ICARO

Using ICARO the tails seen by the beam diagnostics are reproduced

Mon O5

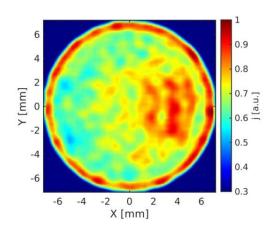
Conclusions

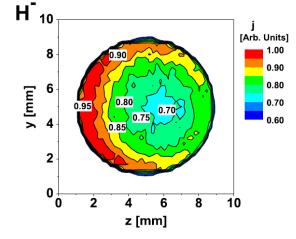
- A particle tracing code with Monte-Carlo collisions, named ICARO, was developed; similar to the code TrajAn by Gutser et al.
 - Trends of previous literature reproduced
 - Highlighted the effect of Coulomb collisions on the H⁻ velocity distribution
- Starting from recent measurements of the gas parameters, the code:
 - $\circ~$ Provides a possible explanation for the optics dependence on pressure, but only postulating non-local effects (v_{drift}, T_{H+} from RF drivers)
 - $\circ~$ Justifies the existence of a broad component (halo) for the beamlet
 - \circ Simulated velocity distribution at GG exit seems more similar to experiments than those from standard beam acceleration models (e.g. IBsimu T_t)


Any input to experiments?

Yes: Reduce energy source term for positive ions

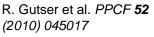
SPARE SLIDES


Experimental evidence

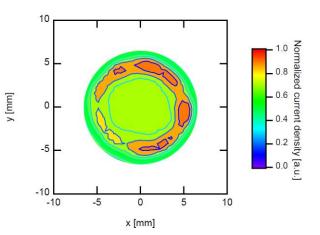

Beam divergence from RF sources under development for the ITER HNB/DNB is highly sensitive to the source filling pressure

$$Div = Div(I_{ex}/U_{ex}^{1.5}, E_{beam}, T_{H})$$

ICARO: simulating a Maxwellian distribution

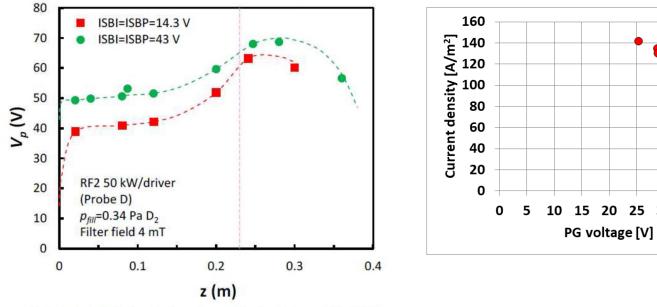


ICARO simulating H⁻ emission from PG with $T_{H_{-}} \sim R_E T_{H_0} = 1.75 \text{ eV}$


 $T_{H0} = 2.5 \text{ eV}^*$ $R_E = 0.7 \text{ **}$ Only H⁻ generation from atoms

* U. Fantz at al., Front. Phys. 9:709651 (2021)

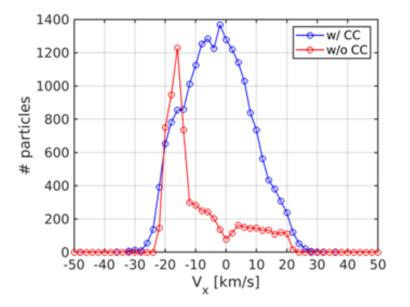
** W. Eckstein and J. P. Biersack, *Appl. Phys.* A **38**, 123 (1985)


Similar code applied to the case of BATMAN (IPP, Garching)

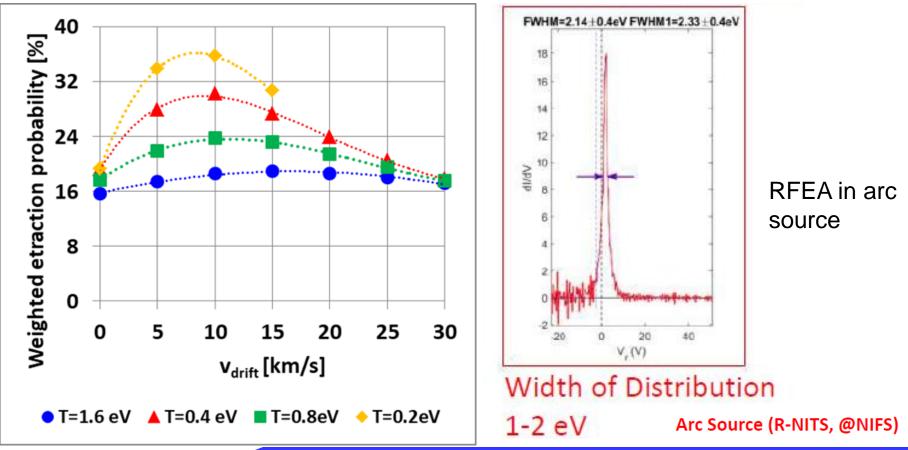
M. Kisaki et al., *Phys.: Conf. Ser.* **2244** 012061 (2022);

From backward tracing of particles starting from emittance measurements at the Megavolt Test Facility (QST, Japan)

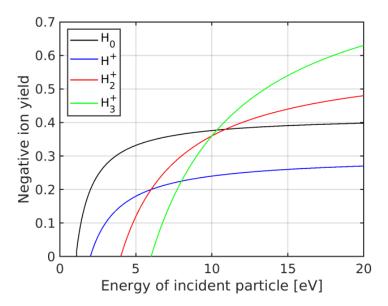
Hydrogen operation P_{RF}= 23 kW/driver $p_{fill} = 0.36 Pa$ $B_{filter} = 1.7 \text{ mT}$


15

20 25


30 35 40

E. Sartori et al., Fusion Engineering and Design Volume 169, 2021)



$$Y(E_{in}) = R_N \eta_0 \left(1 - \frac{E_{th}/R_E}{E_{in}} \right)$$

Parameters from: M. Seidl et al. *Journal of Applied Physics* **79**, 2896 (1996)

By scaling probe measurements at SPIDER towards 70 kW/0.3 Pa: Typical positive ion flux onto the PG: $3-4\cdot10^{21}m^{-3}$. Maxwellian flux of H⁰: $0.25n_{H0,1}(8kT_{H0}/3.14m_{H})^{0.5} = 1.4\cdot10^{22}m^{-3}$ The majority of the H⁻ is obtained from H⁰.