Correlation H^{-}beam properties to Cs-coverage

J Lettry ${ }^{1}$, A Vnuchenko ${ }^{1}$, S Bertolo ${ }^{1}$, C Mastrostefano ${ }^{1}$, M O’Neil ${ }^{1}$, F di Lorenzo 1, Y Coutron ${ }^{1}$, D Steyeart ${ }^{1}$, B Riffaud ${ }^{1}$, J
Thiboud 1, R Guida ${ }^{1}$, K Kapusniak ${ }^{1}$, C Charvet ${ }^{1}$, B Teissandier ${ }^{1}$, P Moyret 1, F Roncarolo 1, S Bart Pedersen ${ }^{1}$, M Duraffourg ${ }^{1}$, C Vuitton ${ }^{1}$, S Joffe ${ }^{1}$, C Machado ${ }^{1}$, U Fantz ${ }^{2}$, S Mochalskyy ${ }^{2}$, D Wunderlich ${ }^{2}$, M Lindqvist ${ }^{2}$, N den Harder ${ }^{2}$, S Briefi ${ }^{2}$, A Hurlbatt ${ }^{2}$, T Kalvas ${ }^{3}$, T^{2} Minea ${ }^{4}$, A Revel ${ }^{4}$

- Operation modes of the ISO3b H- source of CERN's Linac4
- Cs-coverage measurements
- Asymmetries in beam profiles
- BES measurements Horizontal vs. Vertical plane

This contribution provides the experimental side of the ONIX beam formation Poster « H^{-}Beam formation simulation in negative ion source for CERN's Linac4 accelerator»

A.Vnuchenko ${ }^{1}$, J. Lettry ${ }^{1}$, S. Mochalskyy ${ }^{2}$, D. Wünderlich ${ }^{2}$,
U. Fantz ${ }^{2}$, M. Lindqvist ${ }^{2}$, A. Revel ${ }^{4}$, T. Minea ${ }^{4}$

${ }^{1}$ CERN, Geneva 23, Switzerland
${ }^{2}$ Max-Planck-Institut für Plasmaphysik, Garching, Germany
${ }^{3}$ Department of Physics, University of Jyväskylä, Finland
${ }^{4}$ Laboratoire de Physique des Gaz et des Plasmas, Orsay, France

H- Beam formation studies : CERN, LPGP, IPP collaboration

- ONIX PIC MC \& IBSimu codes
- LPGP: T. Minea, A. Revel
- IPP: U. Fantz, S. Mochalskyy, D. Wunderlich, M. Lindqvist, N. den Harder, A. Mimo
- CERN: A. Vnuchenko
- OES / BES analysis
- IPP: U. Fantz, S. Briefi, A. Hurlbatt
- Emittance- Profile-meter
- CERN: F. Roncarolo, S. Bart Petersen, M. Duraffourg, C. Vuitton
- Test stand and prototypes, Cs coverage
- CERN: S. Bertolo, C. Mastrostefano, M. O’Neil, F. di Lorenzo, Y. Coutron, D. Steyeart,
B. Riffaud, J. Thiboud, R. Guida, K. Kapusniak, C. Charvet, P. Moyret
-ISTS Measurement 9 Nov. - 17 Dec. 2020 \& 22 Feb. - 18 Apr. 2021, Feb \& July 2022
- CERN: A. Vnuchenko, J. Lettry

RF-ICP driven, Cs-surface H- source L4-ISO3b

IBSimu L4IS-test stand 152

D. A. Fink, T. Kalvas, J. Lettry, Ø. Midttun, D. Noll, H- extraction systems for CERN's Linac4 H-ion source, Nuclear Inst. and Methods in Physics Research, A 904 (2018) 179-187.

IBSimu : T. Kalvas Uni. Jyvaskyla Finland

Cs-coverage test procedure

i.e. PE\#1 Feb, 2-9 \longrightarrow

PE\#	start	end	Cs mg	e / H nom	Cs mono

(

ISO3b-modes @ L4 operation (H- beam intensity: 35 mA)

ISO3b, PE $\phi 7.5 \mathrm{~mm}$

2022-10-05

Cs-Coverage campaign:
$\checkmark 2$ Plasma Electrodes,
$\checkmark 7$ meas. Points
$\checkmark 0.1$ to 3 Cs-monolayers

Sytematic observation: Peak curent before lowest e/H

PE'aperture
\checkmark For e/H = 5-6: Cs-coverage gradient Along the PE
$>$ Therefore: H^{-}surf emission gradient \& Neg. potential well gradient

NINJA (L4IS) vs. Laugmuir gauge meas. (SPL Plasma generator)

Electron energy distribution vs. Surf. Emis. induced Potential well

- The order of magnitude of the simulated Potential well corresponds to the energy barrier required to supress électrons from reaching the plasma electrode aperture
- Triggered simulations with surf emission gradients
- Note: MB-distr. is not in the version ONIX-single aperture.

E-meter distance Slit-Grids: 200 mm

E-meter
Slit Grids
 Grids: (48 total) 40 active wires at 0.75 mm interval, Angle $0.75 / 200>3.75 \mathrm{mrad} /$ wire spacing

Profile during and after Space Charge Compensation

Horizontal and vertical slit-grid measurement of the beam profile
Left right and top down
assymmetries

Beam Halo before space charge compensation $\tau_{\text {scc }}=150 \mu \mathrm{f}$ (Residual gas pressure) 2022-10-05

After space charge compensation

Norm Radial density distr. from volume to caesiated mode

$>$ The radial distribution as measured with the slit grid in Horizontal and Vertical orientations presents a consistent evolution to larger radii along with the lowering e/H (corresponding to an increase of the surface mode contribution).

Profile angular distribution

Angular distribution's Asymmetry (e/H)

$>$ The angular distribution as measured with the slit grid in Horizontal and Vertical orientations present the same oscillation, a factor close to two between \min and max is observed.
$>$ An asymetry at the level of $\pm 10 \%$ (averaged over a $\pi / 2$ sector) is observed for low e / H, the tendency is lower for volume conditions.
$>$ It seems that Cs-surface mode enhances the asymetry

Non-caesiated vs. well caesiated PE surface (summary)

Measurement of Horizontal and vertical BES

$>$ Outlook: ONIX beam formation phase space, transported via IBSimu to the BES chamber.
$>$ Beam density @ BES folding to the telescope efficiency and compare to BES measurement.
Note: Beam must be within a cone of 10° to avoid wall collision

BES vertical axis

BES horizontal axis

Spectrometer resolution, BES calibration, ROI.

BES measurement H\&V, 16-18 07/2022

RF-power to plasma $20 \mathrm{~kW}, \mathrm{e} / \mathrm{H} \approx 2-3$
H^{-}beam $\approx 50 \mathrm{~mA}$

Acquisition: 30k pulses of $600 \mu \mathrm{~s} @ 0.83 \mathrm{~Hz}$ Integrated beam time $\approx 18-21 \mathrm{~s}$
10) $\mathrm{H}, 30 \mathrm{k}$
11) $\mathrm{V}, 29 \mathrm{k}$
12) H, 32 k
13) $\mathrm{V}, 35 \mathrm{k}$

Data handling:

1) Back ground subtraction and spectrometer calibration with an Ulbricht Sphere
2) Translation of the Doppler wave length blue shift to angle vs. telescope axis

Telescope efficiency

BES-measurements' telescope efficiency: The ' x ' axis in the lab frame is either vertical or horizontal and z is on beam axis.
The efficiency at the $\mathbf{x z}$ plane is shown. Along dashed-dotted lines, Illustrative snapshots on the $\mathbf{y z}$ plane are shown for $\mathrm{x}= \pm 40 \mathrm{~mm}$ and $\mathrm{z}=350 \pm 10 \mathrm{~mm}$.

The detection response results from the folding of the beam angular distribution vs. beam axis (α) with the telescope efficiency. Implicit: we assume a point like source for first order analysis. Outlook at a later stage: direct folding of the IBSimu(ONIX) beam densities with BES efficiency and comparison to BES data

Horizontal and Vertical Fluxes from angular distr. \& point source

The analysis is ready to swallow ONIX simulated phase space transported via IBSimu to the BES detection plane...

BES: Flux \times Telescope eff.
Horizontal and Vertical BES acquisition regions

Radial distribution from BES H \& V

Check of Left-right asymmetry noticedted in ONIX simulation

- The correlation between RF-power transmitted to Plasma, beam intensity and electron to ion ratio is presented; Once conditioning is completed, the volume mode identified via stabilization of its electron to inn ratio is the sign to launch caesiation.
- At nominal beam intensity (35 mA) the correlation between Cs-coverage, RF power to plasma and electron to ion ration is presented.
- Under constant Cs-flow and RF-power, we observed a delay between the highest yield and low electron to ion ratio. The ISO3b plasma Electrode reaches 18 mm into the plasma chamber in a region where the plasma density drops by 2 orders of magnitude. The effect on Cs-coverage was measured on 3 plasma electrodes, Cs-coverage is inhomogeneous and the inner most point is systematically the lowest. We conclude that the surface production rate results from an inhomogeneous work function folded with the impacting proton and H_{0} fluxes. Initial ONIX simulation with gradients of surface emission are presented in the poster A.Vnucheko et.al
- Reduction of the electron to ion ratio (after conditioning) is due to the H^{-}emission from the surface, the order of magnitude of electron energy in the beam extraction region (Langmuir gauge meas.) in the beam formation region to ONIX potential well depth are comparable.
- The beam measured with the slit grid method on a converging beams of 30 and 40 mA showed angular anisotropy and clear corelation between the e/H ratio (linked to surface vs. volume H^{-}origin) and the radial distribution. As the beam intensity was constant, the fraction of surface produced ions should be the cause besides effects of beam optics non linearities.
- In response to the dipole filter field induced symmetry breaking ONIX simulation showed a left right asymmetry of the H^{-}beam, Beam emission spectroscopy closest to the source (without Einzel lens) confirmed the expected asymmetry. ONIX beam transport to the BES measurement plane is still pending.

