Observation of beamlet displacement and parallelism in NIO1

ase

nibs 2 ?

M. Ugolettili,2, M. Cavenago¹, R. Agnello², M. Barbisan ${ }^{2}$, R. Delogu ${ }^{2}$, A. Pimazzoní, C. Poggi ${ }^{2}$

1) INFN-LNL, viale dell'Università 2,35020 Legnaro (PD), Italy; ${ }^{2)}$) Consorzio RFX (CNR,ENEA,INFN,UNIPD,Acciaierie Venete SpA) Corso Stati Uniti 4,35127 Padova, Italy Abstract: The compact radiofrequency negative ion source NIO1 (Negative Ion Optimization phase 1) has many available CF40 ports for side views of beamlet matrix. Two kinds of deflecting magnetic systems are present, namely the fringe field of the source filter Bs (mostly directed in x direction where Z is beam extraction direction) and the electron deflection filter B^{d} (due to magnets inserted in the extraction grid EG and the post-acceleration grid PA) mostly directed in the y direction. Their effect can be separated by cameras looking from different directions, namely CAM1 (looking from -x axis) is sensitive to B^{s} while CAM2 (looking from -y axis) verifies B^{d} effect; both cameras are also sensitive to beam optics, dependent on extracted beamlet currents, their uniformity and applied voltage. Optional algorithms for noise rejection and pre-smoothing can improve automatic recognizing of beamlet peaks, while a good fraction of images can be simply fitted by Gaussian shapes. This analysis allows to estimate beamlet displacement and deflection. Typical shapes of extracted beamlets are listed, noting in CAM2 the effect of $B^{d}{ }_{y}$ sign reversal (due to EG magnets) and of he compensation techniques used to obtain beamlet parallelism (in good matching); systematic analysis of correlation between mages, other source measurements and simple beam simulation is also attempted. Alignment and scaling of images is discussed also with reference to background objects. Moreover, beamlet convergence was sometimes observed, and corresponding datasets were tagged for optics correction. Finally beam size information useful for Faraday cup design is obtained.
I. INTRODUCTION and SETUP An ideal tool to optimize the extraction for a An- ion source would allow to map the bea current density an approximation to thes tool does exist, consisting in vibible tigh camera [7] observing the Balmer line camera l7] observing the Bation following collision of ions and residual gas. Relevant processes [1, 2] are
H^{-}(fast) $+H_{2} \longrightarrow H^{-}$(fast) $+H^{*}+H^{*}$
H^{-}(fast) $+H_{2} \longrightarrow H^{*}$ (fast) $+H_{2}+e$
$H^{*}(n=3) \longrightarrow H^{*}(n=2)+\gamma(656.28 n m$
Assuming rapid decay, light emission density is
$L(x, y, z)$ about proportional to $\quad\left|\mathbf{j}_{H}^{-}(\mathbf{x})\right|$ II.a SETUP

NIO1 (Negative Ion Optimization phase 1) is a H - ion source, producing 9 beamlets. The camera CAM1 and CAM2 must be placed so to avoid: direct view of the plasma; view of brighter reflections. Data can mproved by: selecting adequate camera gains; consi-
dering as 'data region' only the image portions free from reflections; covering some walls by a black foil.

III MODEL FOR FITS

Since x,y ion positions are near τ-axis, in 1st approximation we
can use a simple light collection model for CAM1 and CAM2 $\ell_{1}(z, y)=g_{1} \int \mathrm{~d} x L(x, y, z) \propto \int \mathrm{d} x j_{z}(x, y, z) \equiv I_{1}(z, y)$ $=g_{2} \int \mathrm{~d} y(x, y, z) \propto \int \mathrm{d} y_{z}(x, y, z) \equiv I_{2}(z, x)$ (3.1)
which relates the gains as $g_{2} \int \mathrm{~d} y \ell_{1}=g_{1} \int \mathrm{~d} x \ell_{2}$
III.b Primary fits

Ince f- scattering is possible and extraction is complicate, a3 pea $\bar{द}_{1}\left(z_{k}, y\right) \cong \sum_{i=1}^{N} a_{i} \exp \left(-\frac{\left(y-b_{i}\right)^{2}}{2 \sigma_{i}^{2}}\right) \quad$ (3.2)
$N=3$ (with label 'fit 3g'
$N=4$ (with label 'fit 4 g ' in following pictures) Background iigh may include non-gaussian ter
$\bar{द}_{1}\left(z_{k}, y\right) \cong A+B y+C y^{2}+\sum^{N} a_{i} \exp \left(-\frac{\left(y-b_{i}\right)}{2 \sigma_{i}^{2}}\right)$
For $N=4$, we must set $C=0$ (with the label 'fit $4 \mathrm{~g}+1 \mathrm{p}$ ') $N=3$ we consider (label 'fit $3 \mathrm{~g}+2 \mathrm{p}^{\prime}$) he he C^{2} ' term or exclude it ('fit $3 \mathrm{~g}+1 \mathrm{p}$? III.c Secondary fits
 results of the eq. (3.3) fit
$b_{i}\left(z_{k}\right)=\alpha_{i}+\beta_{i} z_{k}$
$b_{i}\left(z_{k}\right)=\alpha_{i}+\beta_{i} z_{k}, \quad \sigma_{i}\left(z_{k}\right)=\gamma_{i}+d_{i} z_{k}(3.4)$

IV. RESULTS

To perform secondary fit eq. (3.4) we of course need that all slice profiles can be fitted: here an example

Fitting CAM2 data slices with fit ' $4 g+1 p^{\prime}:(a)$ slice 1; (b) slice 3 .

Fitting CAM1 data slices with fit ' $4 g+1 p^{\prime}$ ':(a) slice ; (b) slice 3
IV.b Result the secondary fits From secondary fits the rms beam divergence d_{i} can be calculated for each beamlet group; as well as the beam deflection $\beta_{\mathrm{i}} \mathrm{A}$ nice graphics of them is the border reconstruction

Sconstuccion of beamet borders for cAMM \#2510.7 Lising wo

IV.c Alternative fits

2D fiting models (where the $2 y$ yurface is used instaa of y profile $)$
may offer a valuable and elegant solution to border fits, but with $\}$ may offer a a aluable and degant solution to border fits, but
much greater computational cost; their study is in progress

Figure 1. Overall 3D cut view, showing part of NiO1 acceler CAM3 placement; CFC tile recently moved after CAM3 position

Some notation:
Some notation:
PG plasma grid
PG plasma grid
V_{e} voltage between them V_{s} total acceleration voltage
\mathbf{p}_{s} source pressure \mathbf{p}_{2} vessel pressure rf radiofrequency
\mathbf{P}_{k} forward rf power b. group = beamlet group

Figure 2. 3D geometry of camera setup: (a) section, with z the beam axis; note CAMI larger tilting (b)
overall viev, note CAM2 looks to the pum

$$
\text { IV.d } 2022 \text { RESULTS }
$$

allowing sige
progess

The. group divergences divi=1.4 d_{1} for the same case as before

Figure 8. Reconstruction of beamet borders: (a) CAM1 view (b)
CAM2 view; note that extrapolations of beamet borders 1 and CAM2 view; not that extrapolations of beamet borders 1 and 2 do
intersect in front of the pump, as also directly evident from image The data of NIO1 CAM1 and CAM2 allows to teest several fit formula,

 images. This is consistent with some theoretical approach|5], even
if more analysis is surely worthwhile. The crossing of beamet troups if more analysis is surely worthwhile. The crossing of beamlet groups
is yet not observed on CAM1, while the datata from the new CAM3 being commissioned may alle
least of deflection in z y plane
\qquad

