

Science and Technology Facilities Council

Development and Commissioning of a Hydrogen Ion Source for the CERN ALPHA Experiment

Mark Johnson STFC Daresbury Laboratory[†]

8th Symposium on Negative Ions, Beams and Sources NIBS'22 October 2-7, Padova, Italy

mark.johnson@stfc.ac.uk[†] Formerly: The University of Manchester, UK

Acknowledgements

Science and Technology Facilities Council

The ALPHA Experiment

Motivations

- ALPHA Collaboration based at the CERN Antiproton Decelerator (AD) facility since 2005
- ALPHA targets spectroscopy, gravitational measurements and other precision studies of cold, trapped antihydrogen atoms
- Comparisons with hydrogen provide unique tests of fundamental symmetries and models of new physics
- Recent demonstration of antihydrogen laser cooling could lead to spectroscopy at hydrogen-like precision [1,2]

[1] C. J. Baker *et al.*, Nature **592**, 35-42 (2021) [2] A. Matveev *et al.*, Phys. Rev. Lett. **110**, 230801 (2013)

Antihydrogen Synthesis

- Clouds of cold (~100 K) positrons and antiprotons slowly mixed inside a cylindrical Penning trap, forming antihydrogen mainly through three-body recombination [1]
- Several thousand H produced per mixing cycle, of which ~20 are sufficiently cold to be trapped (T < 0.54 K)
- Trapped H counted using a three-layer silicon vertex detector upon annihilation with the trap walls

[1] M. Ahmadi et al., Nat. Commun. 8, 681 (2017)

Above: On-axis electric potentials and particle distributions at various stages of positron-antiproton mixing [1]

Bottom: Schematic view of the ALPHA-II atom trap region

Antihydrogen Trapping

Antihydrogen is produced and trapped inside a superconducting **magnetic minimum trap**:

- ✓ Octupole provides radial confinement
- ✓ Five mirror coils provide axial confinement and fine tuning of magnetic field shape

$$\vec{F} = -\nabla \vec{\mu} \cdot \vec{B}$$

Above: ALPHA-II atom trap region (simplified) and force on a neutral atom within the trap Left: Typical magnetic field strength inside the atom trap [2]

Recent Physics Results

- Spectroscopy primarily targets the narrow antihydrogen
 1S-2S transition at 243 nm [1]
- Recent observation [2] of 1S-2P Lyman-α transitions and laser cooling [3] of H will lead to improved precision
- Systematic uncertainties will dominate future spectroscopy measurements, preventing model-independent comparisons to hydrogen

Study	Relative Precision		
Hydrogen 1S-2S			
Hänsch et al. (2013)	4.5 x 10 ⁻¹⁵		
Antihydrogen 1S-2S			
ALPHA Collab. (2017)	2 x 10 ⁻¹⁰		
ALPHA Collab. (2018)	2 x 10 ⁻¹²		

Clear motivations to pursue **hydrogen spectroscopy** in the ALPHA antihydrogen atom trap!

Antiproton Source

- ALPHA receives ~10⁷ antiprotons from ELENA every 100 seconds, at beam energy 100 keV
- Around 1% of particles traverse a degrader foil with energies < 5 keV, and are captured in a high-voltage cylindrical Penning trap at 3 T
- The trapped antiproton cloud is cooled and compressed before extraction
- ~10⁵ antiprotons transported along a magnetic beamline at energy ~100 eV, limited by the trap electrode voltages

Images (clockwise): CERN ELENA storage ring, an antiproton beam degrader foil, and a schematic of the ALPHA antiproton catching trap showing the on-axis electric potential for trapping

Mark Johnson | NIBS22 Conference | 05/10/2022

Ion Source Requirements

- Ideally, the extracted H⁻ beam should have similar properties to an antiproton bunch in transit within ALPHA.
- This presents several challenges in terms of source design and integration

Beam Energy

Initial: 10 keV **Target:** < 100 eV **Solution:** Low-energy extraction, deceleration in transport line

Vacuum Initial: 10

Initial: 10⁻² mbar **Target:** < 10⁻⁹ mbar

Solution: Differential pumping within extraction optics

Desired H⁻ Bunch Parameters

Parameter	Value
Final Energy [eV]	50 - 100
Energy Spread [eV]	< 2
lons per bunch	10 ⁷
Bunch length [µs]	~1.0
Equiv. DC Current [µA]	1.6
Vacuum pressure [mbar]	<10-9

Above: Initial H⁻ bunch specifications for the ALPHA ion source and transport beamline

Straightforward operation is important: Most ALPHA shifts won't include an ion source specialist!

PELLIS Ion Source

- Filament-driven multicusp 10 keV H⁻ ion source originally developed at JYFL in 2012
- Low transverse **emittance** ($\epsilon_N = 0.012 \text{ mm mrad}$) for extracted currents up to ~50 μ A

Above: Cross section of the original PELLIS source installed at JYFL **Left:** Extracted H⁻ beam current versus arc current, with an optimised filter field

PELLIS Ion Source

[1] T. Kalvas, PhD Thesis, Univ. Jyväskylä (2013)

PELLIS source is **low-current** but very **high brightness**. Well suited to ALPHA's requirements. Emittance measurements [1] from the JYFL PELLIS source (2012):

Electromagnet Filter Field

- **Electromagnet filter field** allows for optimisation of ٠ H⁻ volume production in the PELLIS source
- Filter magnets mounted within the **front plate** of ٠ the PELLIS source, immersed in **cooling water**

[1] T. Kalvas et al., AIP Conference Proceedings 1515, 349 (2013) 3 0.58 A arc, H⁻ current 0.58 A arc, e⁻ current 2.37 A arc, H⁻ current 2.5 2.37 A arc, e⁻ current 5.60 A arc, H⁻ current 5.60 A arc, e⁻ current Electron current (mA) 2 1.5

70

60

50

current (μA)

H

Left: PELLIS filter magnets, shown separately from the ion source itself **Above:** Extracted beam current as a function of filter magnet current [1]

Full Design

Ion Source and Transport Beamline

Proposed transport beamline for installation on ALPHA in **1-2 years**

PELLIS integration into ALPHA considered as part of a wider design study [1]:

• Modified **PELLIS source** and extraction optics (**IBSimu**)

ALPHA PELLIS Source

Modified Extraction Optics

- Extraction optics integrated into a **differential pumping** system, including a 5 mm aperture / collimator
- Additional **Einzel lens** for matching into the quadrupole switchyard
- Parallel plates correct residual deflection from the PELLIS electron dump:
 - \rightarrow Voltage pulsed to produce H⁻ bunches of length ~1µs

[1] W.A. Bertsche et al., J. Phys: Conf. Ser. 2244, 012080 (2022)

Science and Technology Facilities Council

Extraction Optics

IBSimu Simulations (1 of 2)

- Design of the **extraction optics** and differential pumping chamber informed by **ion tracing** with **IBSimu** [1]
- PELLIS extraction energy reduced to 5 keV to assist with H⁻ deceleration further along the transport line

[1] T. Kalvas et al., Rev. Sci. Instrum 81, 02B703 (2010)

Beam Parameters at Collimator - IBSimu			
Parameter	Horizontal	Vertical	
Energy [keV]	5.0		
H⁻ Current [µA]	50		
ε _N [μm]	4.54	4.38	
β [m]	0.129	0.144	
α	-0.247	-0.141	

Above: IBSimu beam parameters at the collimator midplane **Below:** H⁻ trajectories through the extraction optics up to the collimator

Extraction Optics

IBSimu Simulations (2 of 2)

- Final Einzel lens is used for matching into the quadrupole switchyard. Nominally biased to +10 kV
- Plots show the **transverse phase spaces** just before the switchyard entrance
- H- trajectories from IBSimu shown below

Differential Pumping

- Differential pumping for the ion source and transport beamline simulated in Molflow
- Apertures defined with input from **IBSimu** beam optics calculations

 Pressure of ~10⁻⁹ mbar achieved in the main transport beamline, with two 500 L/s turbo pumps around the extraction optics

Left: Molflow screen capture showing the vacuum system geometry Below: Calculated pressure in each section of the proposed transport beamline

Experimental Setup

VESPA Test Stand at STFC ISIS [1]

- Beam current measured on a Faraday Cup after the first differential pumping stage
- No optics measurements at present: VESPA Allison scanner unavailable during commissioning
- Validation of **differential pumping** design:

Upstream pressure: 2×10^{-5} mbarDownstream pressure: 3×10^{-7} mbar

Good agreement with MOLFLOW calculations

[1] S. Lawrie et al., MOPRI015, Proceedings of IPAC 14 (2014)

Negative Ion Commissioning

April 2022

Achieved up to 30 μ A H⁻ current through the extraction optics at 5 keV

Slightly lower beam currents compared to original PELLIS source at JYFL (10 keV):

- Lower extraction energy (~5 keV)
- Relatively coarse optimisation (e.g. filter field, H₂ gas flow)
- Faraday cup located further downstream

Initial performance already exceeds ALPHA requirements!

Facilities Council

Technology

Positive Ion Commissioning

May 2022

Science and Technology Facilities Council

- Reconfigured the source to extract positive hydrogen ions (H⁺, H₂⁺, H₃⁺) at 5 keV
- Achieved maximum <u>total</u> current of ~22 µA at the Faraday Cup with no filter field

Source achieves similar beam currents for both positive and negative ions

Filter Field Ion Selection

Variable Species Fraction

- Addition of a magnetic filter field **supresses** the extraction of **molecular ions** (H_2^+, H_3^+) [1] due to mass effects in diffusion across the filter field
- For strong filter fields, the **proton ratio** can approach 90% in small multicusp ion sources [2]
- PELLIS design has a variable, electromagnet filter field

REVIEW OF SCIENTIFIC INSTRUMENTS

Slide 21

VOLUME 75, NUMBER 5

(Presented on 11 September 2003; published 17 May 2004)

Outlook and Conclusions

Conclusions

- The existing **PELLIS source** design (JYFL) has been
 adapted for the ALPHA antihydrogen experiment
- The source **exceeded initial requirements** during a short commissioning run on the VESPA test stand
- PELLIS source achieves comparable beam current (20 – 30 μA) for both positive and negative ions

Above: ALPHA PELLIS source during testing Below: ISIS Front End Test Stand RFQ

Outlook and Conclusions

Conclusions

- The existing **PELLIS source** design (JYFL) has been
 adapted for the ALPHA antihydrogen experiment
- The source **exceeded initial requirements** during a short commissioning run on the VESPA test stand
- PELLIS source achieves comparable beam current (20 – 30 μA) for both positive and negative ions

Next Steps

- ALPHA PELLIS source **delivered to CERN** summer 2022. Further in-situ testing planned before installation.
- Two additional sources built at STFC ISIS for future FFA testing on the ISIS Front End Test Stand (FETS)

Above: ALPHA PELLIS source during testing Below: ISIS Front End Test Stand RFQ

Science and Technology **Facilities Council**

Thank You for Listening

Questions are very welcome!

See also: https://alpha.web.cern.ch