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Outline

• 1.) LANSCE H- Ion Source review
• 2.) Motivation
• 3.) The LANSCE H- Ion Source Laser Diagnostic Stand
• 4.) Cs measurements using resonant absorption spectroscopy

− i.e. Tunable Diode Laser Absorption Spectroscopy (TDLAS)
• 5.) Status of H- Beam density using Cavity Ring Down Spectroscopy (CRDS)

Look here for where we are in this outline
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The Los Alamos Neutron Science Center (LANSCE)
H+ beam program

(~100 MeV)
H- beam program (800 MeV)

H+ Ion Source

H- ion source

• LANSCE Dual H+ and H- beam programs
− H+ beam one program
 Isotope Production Facility

− H- beam multiple programs
 (Proton Radiography, Lujan Center, WNR, Ultra-Cold Neutrons)

• The LANSCE H- Ion Source
− H- ion source parameters
 120 Hz, 10% D.F. (833µs pulse)
 14-16 mA of H- current
 Ion Source recycle every 4-5 weeks

https://lansce.lanl.gov

1.)  LANSCE H- Ion source review



49/28/2022

Brief look at H- Ion Source and initial LANSCE injection

1.)  LANSCE H- Ion source review

Ion Source &
80 kV extraction
column

Ion Source Racks
Floating at 80 kV

Cockroft-Walton
Injector (670 kV) Total current extracted from H- ion source

Is ~60-100mA, e-/H- ratio about (3 to 5)/1
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The LANSCE Multi-cusp Cesiated Surface-Conversion  
H- Source: Photos

External, Rear View,
Multi-cusp magnets (~1-2 kG)

Repeller

Cesium Transfer Tube

Tungsten Filaments
Convertor

H2 inlet

Internal, Side View
critical components

1.)  LANSCE H- Ion source review
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• Vacuum chamber filled with Hydrogen gas (~1.0 mTorr). 
• Tungsten filaments that provide a pulsed electron arc current that ionizes this H2 gas and 

creates a plasma 
− (Pulse:  120 Hz, 1 ms on, 7 ms off) (IDC = 100 A, Iarc = ~30 A)

• Plasma confined by a decagonal multi-cuspmagnetic field in the walls.
• H+ ions in the generated plasma are attracted to a negatively biased (-250 V) convertor. 
• The convertor is coated in cesium.  Low work function of cesium encourages surface-conversion 

of H0, Hx
+ to H- ions.

• Negative Potential ejects produced H- ions are promptly then ejected from the negative potential 
convertor, which is concavely shaped to focus the H- ion beam towards the source exit and the 
high voltage beam injector (not shown).

The LANSCE Multi-cusp Cesiated Surface-Conversion  
H- Source:  How H- Ion beam is made

1.)  LANSCE H- Ion source review
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• Vacuum chamber filled with Hydrogen gas (~1.0 mTorr). 
• Tungsten filaments that provide a pulsed electron arc current that ionizes this H2 gas and 

creates a plasma 
− (Pulse:  120 Hz, 1 ms on, 7 ms off) (IDC = 100 A, Iarc = ~30 A)

• Plasma confined by a decagonal multi-cuspmagnetic field in the walls.
• H+ ions in the generated plasma are attracted to a negatively biased (-250 V) convertor. 
• The convertor is coated in cesium.  Low work function of cesium encourages surface-conversion 

of H0, Hx
+ to H- ions.

• Negative Potential ejects produced H- ions are promptly then ejected from the negative potential 
convertor, which is concavely shaped to focus the H- ion beam towards the source exit and the 
high voltage beam injector (not shown).

The LANSCE Multi-cusp Cesiated Surface-Conversion  
H- Source:  How H- Ion beam is made

TLDR; Multi-Physics, Highly Dynamical Environment to Create H- Ions!
1.)  LANSCE H- Ion source review
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Relevant current measurements during ion source pulse
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1.)  LANSCE H- Ion source review
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Motivation

• The internal process of Cs, H- inside the source is not well understood
• Dynamic processes 10-1000 µs scale

• Cesium surface-conversion is the vital ingredient for making H- beam
– Side effects lead to beam instabilities, e.g. beam injector arc downs

• The H- beam creation, propagation, and neutralization inside the H-
ion source is not understood.
– How and where are H- Ions created and destroyed?  How many?

2.)  Motivation
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Motivation

• The internal process of Cs, H- inside the source is not well understood
• Dynamic processes 10-1000 µs scale

– The correct tool is lasers tuned to atomic physics processes

• Cesium surface-conversion is thee vital ingredient for making H- beam
– Side effects lead to beam instabilities, e.g. beam injector arc downs
– Cs density:  Optical absorption spectroscopy (D2 transition, S1/2 → P3/2)

• The H- beam creation, propagation, and neutralization inside the H-
ion source is not understood.
– How and where are H- Ions created and destroyed?  How many?
– H- density:  Measure photo-detachment of H- ions (H- + γ → H0 + e-)

2.)  Motivation



119/28/2022

Motivation

Future progress requires an “H- Ion Source Laser Diagnostic Stand”

• The internal process of Cs, H- inside the source is not well understood
• Dynamic processes 10-1000 µs scale

– The correct tool is lasers tuned to atomic physics processes

• Cesium surface-conversion is thee vital ingredient for making H- beam
– Side effects lead to beam instabilities, e.g. beam injector arc downs
– Cs density:  Optical absorption spectroscopy (D2 transition, S1/2 → P3/2)

• The H- beam creation, propagation, and neutralization inside the H-
ion source is not understood.
– How and where are H- Ions created and destroyed?  How many?
– H- density:  Measure photo-detachment of H- ions (H- + γ → H0 + e-)

2.)  Motivation
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Proposed laser diagnostic path

• Just misses filaments
• Off slightly off center from Cs port
• Center of Converter H- Beam Path

3.)  LANSCE H- Ion Source Laser Diagnostic Stand
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Pics of Laser Diagnostic Stand

West Side

Ion source pulser,
waveform generator

Safety
Shroud

Nd:YAG
Entry

Diagnostic stand discussed at NIBS’2020
Fully built and functional!

3.)  LANSCE H- Ion Source Laser Diagnostic Stand
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Diagnostic stand discussed at NIBS’2020
Fully built and functional!

Pics of Laser Diagnostic Stand

Water Cooling
Manifold

Water Chiller

3.)  LANSCE H- Ion Source Laser Diagnostic Stand

East Side
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Cs Measurements using TDLAS

• Experimental setup
• The measurements

− Dynamic Cs Density measurements during H- Ion Source Pulse
− Static Cs Density measurements outside H- Ion Source Pulse
 Change various source parameters

− Unstable Cs Density measurements
 Cesiated Quenches

− Thermal Cs measurements
 1st Estimation of TCs

4.)  Cs measurements using TDLAS
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Optical setup block diagram.  Resonant laser absorption 
for measuring Cesium Density

• A continuous, tunable diode laser is swept across an atomic transition (we use 
the D2 transition, 6S1/2  6P3/2, ~852 nm)

• Caveat:  Depopulation effects not taken into account
− Qualitative interpretation before quantitative

• Reference signal is used for ln(λ,0) instead of fitting

𝑛𝑛𝐶𝐶𝐶𝐶 =
8π𝑐𝑐
λ0
4
𝑔𝑔𝑘𝑘
𝑔𝑔𝑖𝑖

1
𝐴𝐴𝑖𝑖𝑘𝑘𝑙𝑙

� ln
𝐼𝐼 λ, 𝑙𝑙
𝐼𝐼 λ,0

𝑑𝑑λ

4.)  Cs measurements using TDLAS

Acronym:
LANSCE H- Ion Source (LHIS)

CW
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Relevant current measurements during ion source pulse
With laser signal!
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Apologies for the two “orange traces”!

4.)  Cs measurements using TDLAS



189/28/2022

Zoom in:  Cs Density outside source pulse

4.)  Cs measurements using TDLAS

• Cs Reference
• Cs Signal
• -LN(Sig/Ref) (Upper Trace)

• Arc I
• Converter I
• Repeller I (Lower Trace) 
• Cs Oven I
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Zoom in:  Cs Density outside source pulse

Cs peaks shorten and broaden inside the pulse compared to outside

4.)  Cs measurements using TDLAS

• Cs Reference
• Cs Signal
• -LN(Sig/Ref) (Upper Trace)

• Arc I
• Converter I
• Repeller I (Lower Trace) 
• Cs Oven I
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Cs Density during an H- Beam Pulse

• Ion Source Fully running
• Adjust Cs Oven Temperature 

from 100°C to 260 °C
• Rate of Change in density as 

expected from Cs vs vapor 
pressure at ~1 mTorr.

• Cs during initial transfer is 
250°C

• Nominal running ~180°C
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4.)  Cs measurements using TDLAS
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Pre-Pulse Thermal Equilibrium Cs Density
vs different Source Parameters

Pulse
OFF

• Cs Oven Temp OFF
− Relying on Cs already in 

the chamber
• Pulse OFF (Static)

− Direct relationship to nCs
 Filament Power
 H2 flow
 H20 chiller

• Pulse ON
− Inverse relationship to nCs
 Pulse

− Dynamic system, pushes 
nCs out of LOS

4.)  Cs measurements using TDLAS

↑DC power → ↑nCs
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Pre-Pulse Thermal Equilibrium Cs Density
vs different Source Parameters

Pulse
OFF

Pulse
ON

• Cs Oven Temp OFF
− Relying on Cs already in 

the chamber
• Pulse OFF (Static)

− Direct relationship to nCs
 Filament Power
 H2 flow
 H20 chiller

• Pulse ON (Dynamic)
− Inverse relationship to nCs

− Suppression of nCs in LOS
− Other effects less 

pronounced

4.)  Cs measurements using TDLAS

↑DC power → ↑nCs
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Pre-Pulse Thermal Equilibrium Cs Density
vs different Beam Parameters

Pulse
OFF

Pulse
ON

• Cs Oven Temp OFF
− Relying on Cs already in 

the chamber
• Pulse OFF (Static)

− Direct relationship to nCs
 Filament Power
 H2 flow
 H20 chiller

• Pulse ON (Dynamic)
− Inverse relationship to nCs

− Suppression of nCs in LOS
− Other effects less 

pronounced

4.)  Cs measurements using TDLAS

Continual Cs evaporation required to overcome this suppression

↑DC power → ↑nCs
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Ion source Cesiated Quench and Spike studies

• Random cesiation effect cause instabilities on the Arc 
and/or Converter current in the Ion source.
− Large → Arc/Converter Quench
− Small → Arc/Converter Spike

• Cs laser perfect for studying this phenomena.
• At LANSCE, these cause beam instabilities

− Arc down H- Ion Source 80 kV injector (1-5 per hour)
• What follows:  many qualitative plots of one of these 

events (Below)
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4.)  Cs measurements using TDLAS
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Ion source Cesiated Quench and Spike studies

• 1.)  Nominal pulses
• 2.)  1st Cesiated Quench
• 3.)  2nd Cesiated Quench
• 4.)  Line Saturation
• 5.)  Arc Spikes
• 6.)  Slow return to nominal?
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4.)  Cs measurements using TDLAS
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1st Cesiated Quench

• Arc current appears to shorted, goes everywhere
− Partially to the Repeller

• Converter then Arcs to Cs Oven
• 1.) Brief decrease onset of Arc Current
• 2.) Brief increase onset of Converter Current
• 3.)  Cs everywhere after pulse off!
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4.)  Cs measurements using TDLAS
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2nd Cesiated Quench

• Arc current appears to shorted, goes everywhere
− Partially to the Repeller
− Partially to the Cs Oven
− Partially to the Converter

• 1.) Brief decrease onset of Arc Current
• 2.) Plasma-Wall interactions
• 3.)  Cs everywhere after pulse off!
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4.)  Cs measurements using TDLAS
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What causes these Cesiated quenches?

• Nonuniform Cs deposits 
that build up on 
walls/converter?

• Nonuniform Evaporative
effects?
− Creates conductive plasma?

• Path to Ground Created 
somehow

• More Quenches seen when 
turning on cold source
− Nonuniform Cold Cs deposits

Cs
Cs

Cs
Cs

Cs
Cs

Cs

4.)  Cs measurements using TDLAS
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Cs Temperature during an H- Beam Pulse

• Pulse OFF temp is similar to the in-house 
emissivity measurements

• Work ongoing to determine to higher 
accuracy

Pulse
OFF Pulse

OFF
Pulse
OFF

Pulse
ON

ΔλFWHM,1 = 2.36 pm
T1 = 1726 K

λFWHM,2 = 1.94 pm
T2 = 1057 K

M. Lindaur,  Master Thesis,  Univ. Augsburg (2017)

Preliminary
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H- Density Measurements using CRDS
Test cavity

5.) H- measurements using CRDS

• 29 µs during test. (~0.5 m cavity length)
• Achieved good characterization of CRDS

Acronym:
LANSCE H- Ion Source (LHIS)
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5.) H- measurements using CRDS

τ = ~2 µs

• Decay only 2 µs, vs 26 µs during test. (~0.8 m cavity length)
• Issue:  Need to Improve alignment mirror manifold

 Atmosphere vs vacuum alignment.  Slight skew between east/west 
optical ports.

• Issue:  Decay became shorter over time
− Mechanical vibration/thermal issues?
− Mirror contamination

H- Density Measurements using CRDS
H- Ion Source
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Conclusions

• Fully developed H- Ion Source Laser Diagnostic Stand
− 1st results of Cs TDLAS measurements shown
− Stay tuned for H- measurements
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Backup
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Checking for Magnetic Effects

• Magnetic field strongest by the walls.
• Will magnetic field at entry/exit cause Zeeman 

splitting?
• The effect is negligible/manageable

− 2kG magnets tested in lab
− 1kG in source

• No mag: 5.61x1016 atoms/m3

• With mag:  5.94x1016 atoms/m3

 6% difference.  NOT AN 
ISSUE
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The LANSCE Multi-cusp Cesiated Surface-Conversion 
Source with initial 80 kV extraction

Ion source
Equipment

Racks:

Hydrogen flow
Filament PS
Convertor PS
Cs oven ctrl

Etc.

Floating at 
80kV

Ground:  0V  
Column:  -28 kV  

Extractor:  -68 kV  
Ion Source:  -80 kV  

80 kV
Supply/Regula

tor

Cables to
Ion Source H- + e-

Total current extracted from H- ion source
Is ~60-100mA, e-/H- ratio about (3 to 5)/1
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Large Transient observed with 80kV (June 2019)

Ion source
Equipment

Racks

Floating at 
80kV

Ground:  0V  
Column:  -28 kV  

Extractor:  -68 kV  
Ion Source:  -80 kV  80 kV

Supply

Cables to
Ion Source

e-

~500 Amp Arc, Convertor Surges
~1 Amp of Charge leaving Ion source!

20x the charge during nominal pulse (80mA)

No wonder the 80kV Arcs Down
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This diagnostic provides needed insight while avoiding 
historical challenges
• Present diagnostics tools external/outside the ion source

− External voltage/current monitors, thermocouples
− Need large, cumbersome HV Injection to measure emittance, beam current

− H- Ion Source Test Stand (ISTS) has become more of a (very successful) beam injection R&D tool in the last 
few years.

 Safety:  Radiation hazards

• New H- Ion Source Laser diagnostic stand looks directly into ion source
− No high voltage extraction makes for “benchtop tool” for more efficient experiments
 Safety:  No radiation hazards (albeit we introduce laser hazards)

− Fast resolution (as low as ~10 μs) to diagnose intra-pulse effects
• Establish the diagnostic for accelerator based ion sources(*)
• Invaluable data for global ion source community

• *(As far as I know)
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How will this novel diagnostic improve LANSCE 
programmatic needs? 
• Understanding time-dependent signatures of the Cs density will provide 

valuable tool to improve stability issues
− What is correlation between Cs density and instabilities related to arc current 

transients? [1]
• H- density will reveal the hidden neutralization mechanisms of H- ions inside 

the H- ion source.
− IH- = ~0.1 - 1 A (hypothesized) at convertor, but only ~0.015 A (measured) 

downstream? Factor of x100?
 Even recovering a small amount of neutralized H- could be revolutionary for LANSCE

• Data for ion source modelling.

[1] Transients on Arc and Convertor currents in the Multi-cusp Cesiated Surface Conversion H- Source at LANSCE
2019 IEEE Pulsed Power & Plasma Science (PPPS), 2019, p. 1-4 (Kleinjan, D.)
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