Discrete Goldstone Bosons

Víctor Enguita-Vileta

for

FLASY 2022

de Madrid 22

in collaboration with Belén Gavela, Rachel Houtz and Pablo Quílez

arXiv:2205.09131

GBs from continuous symmetries

Can m^2 be produced without explicit breaking???

What about *discrete* symmetries?

Discrete non-abelian symmetries, when <u>non-linearly realized</u>, offer new venues to address this problem.

[Das, Hook, 2006.10767]

- Allow contributions to $V(\phi)$ that generate a mass for the GBs
- Remove $\propto \Lambda^2$ radiative corrections from $V(\phi)$
- Coefficients in $V(\phi)$ go as $c_n \propto \epsilon^n$ m^2 supressed with $\epsilon \ll 1$

Φ , a triplet of A_4

$$\Phi$$
 in a triplet of A_4 , we impose $\Phi^T\Phi=\phi_1^2+\phi_2^2+\phi_3^2=f^2$, where $f\sim 4\pi$ Λ

⇒ non-linearly realized

Three independent invariants allowed by symmetry:

$$\mathcal{J}_{2} = \phi_{1}^{2} + \phi_{2}^{2} + \phi_{3}^{2},
\mathcal{J}_{3} = \phi_{1}\phi_{2}\phi_{3},
\mathcal{J}_{4} = \phi_{1}^{4} + \phi_{2}^{4} + \phi_{3}^{4}.$$

$$\mathcal{J}_2 = f^2 = cte$$
disappears from V(Φ)

$$V_{dGB}(\Phi) = c_3 \Lambda \, \mathcal{I}_3 + c_4 \mathcal{I}_4 + \cdots$$

 \Rightarrow Absence of $\propto \Lambda^2$ corrections

$$\implies$$
 m² $\ll \Lambda^2$

Natural minima & remnant symmetries

Manifold of the A_4 invariants

Natural minima defined by

$$\frac{\partial \mathcal{I}_j}{\partial \phi_i} = 0.$$

$$\Rightarrow \frac{\partial V(\Phi)}{\partial \phi_i} = \sum_j \frac{\partial V}{\partial \mathcal{I}_j} \frac{\partial \mathcal{I}_j}{\partial \phi_i} = 0$$

- \Rightarrow Do not depend on the details of $V(\Phi)$
- ⇒ In the low-energy potential, **remnant explicit** symmetry.

E.g. around C, $A_4
ightarrow Z_3$ and

Enforced by Z_3 symmetry

$$\mathcal{I}_3 = \frac{f}{\sqrt{3}} \left[-\frac{f^3}{3} + (\pi_1^2 + \pi_2^2) - \frac{1}{3\sqrt{2}f} (\pi_1^3 - 3\pi_1\pi_2^2) - \frac{17}{24f^2} (\pi_1^2 + \pi_2^2)^2 \right] + \cdots$$

Phenomenological signals

Tell-tale experimental signals are brought in by the remnant symmetry:

- Degeneracy of the masses &
- Simultaneous production from the SM

Assuming interaction: (SM singlet of A_4)

$$\mathcal{L} = \mathcal{O}_{SM} \mathcal{I}_3$$

$$\mathcal{I}_3 = \frac{f}{\sqrt{3}} \left[-\frac{f^3}{3} + (\pi_1^2 + \pi_2^2) - \frac{1}{3\sqrt{2}f} (\pi_1^3 - 3\pi_1\pi_2^2) - \frac{17}{24f^2} (\pi_1^2 + \pi_2^2)^2 \right] + \cdots$$

1.

Phenomenological signals

Tell-tale experimental signals are brought in by the remnant symmetry:

Definite production rates from the SM

Assuming the interaction $\mathcal{L} = \mathcal{O}_{SM} \mathcal{I}_3$

Assumming: • SM singlet of A_4 • $m_{\pi_i}^2 \ll f^2$

Production rates are fixed by the lowest-order:

$$\frac{\sigma(SM \to 2\pi)}{\sigma(SM \to 3\pi)} = 64\pi^2 \frac{f^2}{E_{CM}^2}$$

$$\frac{\sigma(SM \to 3\pi)}{\sigma(SM \to 4\pi)} = \frac{6(24\pi)^2}{19(17)^2} \frac{f^2}{E_{CM}^2}$$

Discrete vs continuous

Provided that the coefficients are small, discrete \Rightarrow approximate continuous

SO(3)-invariant
$$V_{dGB}^{A_4}(\Phi)=(\mu^2\Phi^T\Phi+\lambda(\Phi^T\Phi)^2)+(c_3\Lambda\mathcal{I}_3+c_4\mathcal{I}_4)+\cdots$$

$$A_4\text{-invariant}$$

$$(\mathcal{I}_2=\Phi^T\Phi)$$

$$c_3,c_4\ll 1$$

Other cases with even better suppression??? \Rightarrow continuous more exact \Rightarrow more suppression to masses

Discrete vs continuous

The SO(3)-breaking invariants arise at higher orders:

SO(3)-invariant
$$V_{dGB}^{A_4}(\Phi) = (\mu^2 \Phi^T \Phi + \lambda (\Phi^T \Phi)^2) + (c_6 \frac{J_6}{\Lambda^2} + c_{10} \frac{J_{10}}{\Lambda^6}) + \cdots$$

$$(J_2 = \Phi^T \Phi) \qquad \qquad A_5\text{-invariant}$$

$$c_6, c_{10} \ll 1$$

 \Rightarrow Masses much more suppressed than for A_4

Other examples

Discrete subgroups of SO(3):

- Alternating group A_4 : in its **3** representation.
- Symmetric group S_4 : in its two triplet **3** and **3'** reps.
- Alternating group A_5 : in its **3**, **3'**, **4**(?) and **5**(?).

• ..

Also as subgroups of larger continuous symmetries:

• A_5 as a subgroup of SO(4)

•

Final remarks

- Non-linearly realized discrete symmetries open new and suggestive modelbuilding venues.
- They offer

- ✓ Ameliorated UV-insensitivity
- ✓ Definite and distinct phenomenology
- Many interesting examples considered:
 - \checkmark Triplet of A_4
 - \checkmark Triplets of S_4
 - \checkmark Triplet & quadruplet of A_5
 - **√** ...

Thank you very much

Remnant symmetries

The **natural minima** A & B retain two different subgroups à la Wigner, Z_5 and Z_3 resp.

Two different low-energy structures for \mathcal{I}_6 :

Explicit Z_3 symmetry:

$$\mathcal{I}_6 = \frac{32}{9} f^4 \left[\frac{31}{96} f^2 - (\pi_1^2 + \pi_2^2) + \frac{10\sqrt{2}}{24f} (\pi_1^3 - 3\pi_1\pi_2^2) + \frac{\sqrt{30}}{4f} (\pi_2^3 - 3\pi_1^2\pi_2) + \frac{31}{12f^2} (\pi_1^2 + \pi_2^2)^2 \right] + \cdots$$

Explicit Z_5 symmetry:

$$\mathcal{I}_6 = \frac{32}{5} \left[\frac{f^2}{32} + (\pi_1^2 + \pi_2^2) - \frac{31}{12f^2} (\pi_1^2 + \pi_2^2)^2 - \frac{1}{4f^3} (\pi_1^5 - 10\pi_1^3\pi_2^2 + 5\pi_1\pi_2^4) \right] + \cdots$$

Phenomenological signals

Tell-tale experimental signals are brought in by the remnant symmetry:

- Degeneracy of the masses &
- Simultaneous production
- Definite production rates

$$\frac{\sigma(SM \to 2\pi)}{\sigma(SM \to 4\pi)} = \frac{216 (4\pi)^4}{19(31)^2} \frac{f^4}{E_{CM}^4}$$

$$\frac{\sigma(SM \to 4\pi)}{\sigma(SM \to 5\pi)} = \frac{19(31)^2(8\pi)^2}{45^2} \frac{f^2}{E_{CM}^2}$$

$$J_6 = \frac{32}{5} \left[\frac{f^2}{32} + (\pi_1^2 + \pi_2^2) - \frac{31}{12f^2} (\pi_1^2 + \pi_2^2)^2 \right] + \frac{1}{4f^3} (\pi_1^5 - 10\pi_1^3\pi_2^2 + 5\pi_1\pi_2^4) + \cdots$$

Φ , a triplet of A_4

