Discrete Goldstone Bosons **Víctor Enguita-Vileta** for **FLASY 2022** de Madrid 22 in collaboration with Belén Gavela, Rachel Houtz and Pablo Quílez arXiv:2205.09131 ### GBs from continuous symmetries Can m^2 be produced without explicit breaking??? # What about *discrete* symmetries? Discrete non-abelian symmetries, when <u>non-linearly realized</u>, offer new venues to address this problem. [Das, Hook, 2006.10767] - Allow contributions to $V(\phi)$ that generate a mass for the GBs - Remove $\propto \Lambda^2$ radiative corrections from $V(\phi)$ - Coefficients in $V(\phi)$ go as $c_n \propto \epsilon^n$ m^2 supressed with $\epsilon \ll 1$ ## Φ , a triplet of A_4 $$\Phi$$ in a triplet of A_4 , we impose $\Phi^T\Phi=\phi_1^2+\phi_2^2+\phi_3^2=f^2$, where $f\sim 4\pi$ Λ #### ⇒ non-linearly realized Three independent invariants allowed by symmetry: $$\mathcal{J}_{2} = \phi_{1}^{2} + \phi_{2}^{2} + \phi_{3}^{2}, \mathcal{J}_{3} = \phi_{1}\phi_{2}\phi_{3}, \mathcal{J}_{4} = \phi_{1}^{4} + \phi_{2}^{4} + \phi_{3}^{4}.$$ $$\mathcal{J}_2 = f^2 = cte$$ disappears from V(Φ) $$V_{dGB}(\Phi) = c_3 \Lambda \, \mathcal{I}_3 + c_4 \mathcal{I}_4 + \cdots$$ \Rightarrow Absence of $\propto \Lambda^2$ corrections $$\implies$$ m² $\ll \Lambda^2$ ### Natural minima & remnant symmetries Manifold of the A_4 invariants Natural minima defined by $$\frac{\partial \mathcal{I}_j}{\partial \phi_i} = 0.$$ $$\Rightarrow \frac{\partial V(\Phi)}{\partial \phi_i} = \sum_j \frac{\partial V}{\partial \mathcal{I}_j} \frac{\partial \mathcal{I}_j}{\partial \phi_i} = 0$$ - \Rightarrow Do not depend on the details of $V(\Phi)$ - ⇒ In the low-energy potential, **remnant explicit** symmetry. E.g. around C, $A_4 ightarrow Z_3$ and #### Enforced by Z_3 symmetry $$\mathcal{I}_3 = \frac{f}{\sqrt{3}} \left[-\frac{f^3}{3} + (\pi_1^2 + \pi_2^2) - \frac{1}{3\sqrt{2}f} (\pi_1^3 - 3\pi_1\pi_2^2) - \frac{17}{24f^2} (\pi_1^2 + \pi_2^2)^2 \right] + \cdots$$ ## Phenomenological signals Tell-tale experimental signals are brought in by the remnant symmetry: - Degeneracy of the masses & - Simultaneous production from the SM Assuming interaction: (SM singlet of A_4) $$\mathcal{L} = \mathcal{O}_{SM} \mathcal{I}_3$$ $$\mathcal{I}_3 = \frac{f}{\sqrt{3}} \left[-\frac{f^3}{3} + (\pi_1^2 + \pi_2^2) - \frac{1}{3\sqrt{2}f} (\pi_1^3 - 3\pi_1\pi_2^2) - \frac{17}{24f^2} (\pi_1^2 + \pi_2^2)^2 \right] + \cdots$$ 1. ## Phenomenological signals Tell-tale experimental signals are brought in by the remnant symmetry: Definite production rates from the SM Assuming the interaction $\mathcal{L} = \mathcal{O}_{SM} \mathcal{I}_3$ Assumming: • SM singlet of A_4 • $m_{\pi_i}^2 \ll f^2$ Production rates are fixed by the lowest-order: $$\frac{\sigma(SM \to 2\pi)}{\sigma(SM \to 3\pi)} = 64\pi^2 \frac{f^2}{E_{CM}^2}$$ $$\frac{\sigma(SM \to 3\pi)}{\sigma(SM \to 4\pi)} = \frac{6(24\pi)^2}{19(17)^2} \frac{f^2}{E_{CM}^2}$$ #### Discrete vs continuous Provided that the coefficients are small, discrete \Rightarrow approximate continuous SO(3)-invariant $$V_{dGB}^{A_4}(\Phi)=(\mu^2\Phi^T\Phi+\lambda(\Phi^T\Phi)^2)+(c_3\Lambda\mathcal{I}_3+c_4\mathcal{I}_4)+\cdots$$ $$A_4\text{-invariant}$$ $$(\mathcal{I}_2=\Phi^T\Phi)$$ $$c_3,c_4\ll 1$$ Other cases with even better suppression??? \Rightarrow continuous more exact \Rightarrow more suppression to masses #### Discrete vs continuous The SO(3)-breaking invariants arise at higher orders: SO(3)-invariant $$V_{dGB}^{A_4}(\Phi) = (\mu^2 \Phi^T \Phi + \lambda (\Phi^T \Phi)^2) + (c_6 \frac{J_6}{\Lambda^2} + c_{10} \frac{J_{10}}{\Lambda^6}) + \cdots$$ $$(J_2 = \Phi^T \Phi) \qquad \qquad A_5\text{-invariant}$$ $$c_6, c_{10} \ll 1$$ \Rightarrow Masses much more suppressed than for A_4 ### Other examples #### Discrete subgroups of SO(3): - Alternating group A_4 : in its **3** representation. - Symmetric group S_4 : in its two triplet **3** and **3'** reps. - Alternating group A_5 : in its **3**, **3'**, **4**(?) and **5**(?). • .. Also as subgroups of larger continuous symmetries: • A_5 as a subgroup of SO(4) • ### Final remarks - Non-linearly realized discrete symmetries open new and suggestive modelbuilding venues. - They offer - ✓ Ameliorated UV-insensitivity - ✓ Definite and distinct phenomenology - Many interesting examples considered: - \checkmark Triplet of A_4 - \checkmark Triplets of S_4 - \checkmark Triplet & quadruplet of A_5 - **√** ... ### Thank you very much ### Remnant symmetries The **natural minima** A & B retain two different subgroups à la Wigner, Z_5 and Z_3 resp. Two different low-energy structures for \mathcal{I}_6 : #### Explicit Z_3 symmetry: $$\mathcal{I}_6 = \frac{32}{9} f^4 \left[\frac{31}{96} f^2 - (\pi_1^2 + \pi_2^2) + \frac{10\sqrt{2}}{24f} (\pi_1^3 - 3\pi_1\pi_2^2) + \frac{\sqrt{30}}{4f} (\pi_2^3 - 3\pi_1^2\pi_2) + \frac{31}{12f^2} (\pi_1^2 + \pi_2^2)^2 \right] + \cdots$$ #### Explicit Z_5 symmetry: $$\mathcal{I}_6 = \frac{32}{5} \left[\frac{f^2}{32} + (\pi_1^2 + \pi_2^2) - \frac{31}{12f^2} (\pi_1^2 + \pi_2^2)^2 - \frac{1}{4f^3} (\pi_1^5 - 10\pi_1^3\pi_2^2 + 5\pi_1\pi_2^4) \right] + \cdots$$ ### Phenomenological signals Tell-tale experimental signals are brought in by the remnant symmetry: - Degeneracy of the masses & - Simultaneous production - Definite production rates $$\frac{\sigma(SM \to 2\pi)}{\sigma(SM \to 4\pi)} = \frac{216 (4\pi)^4}{19(31)^2} \frac{f^4}{E_{CM}^4}$$ $$\frac{\sigma(SM \to 4\pi)}{\sigma(SM \to 5\pi)} = \frac{19(31)^2(8\pi)^2}{45^2} \frac{f^2}{E_{CM}^2}$$ $$J_6 = \frac{32}{5} \left[\frac{f^2}{32} + (\pi_1^2 + \pi_2^2) - \frac{31}{12f^2} (\pi_1^2 + \pi_2^2)^2 \right] + \frac{1}{4f^3} (\pi_1^5 - 10\pi_1^3\pi_2^2 + 5\pi_1\pi_2^4) + \cdots$$ # Φ , a triplet of A_4