Tasting Flavoured Majorana Dark Matter

Harun Reșid Acaroğlu

This talk is based on H.R.A. and M. Blanke, arXiv:2109.10357.

FLASY 2022, Lisbon

June 30, 2022

Motivation

You know the story ...

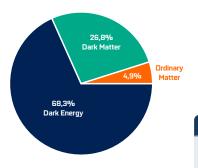


Fig. 1: Estimated energy-matter content of the universe. [1807.06209]

DM properties:

- what is its particle nature?
- single particle vs sector?
- analogy to SM matter?

Assumption

DM is a flavoured Majorana fermion that comes in three generations

Flavoured Majorana DM

We consider flavoured Majorana fermionic DM $\chi = (\chi_L, i \sigma_2 \chi_L^*)^T$ coupling to right-handed up-type quarks via a scalar $(\mathbf{3}, \mathbf{1})_{2/3}$ mediator ϕ :

$$\begin{split} \mathcal{L}_{\mathsf{NP}} \supset &\frac{1}{2} \left(i \bar{\chi} \partial \!\!\!/ \chi - M_{\chi} \bar{\chi} \chi \right) \\ &+ \left(D_{\mu} \phi \right)^{\dagger} (D^{\mu} \phi) - m_{\phi}^{2} \phi^{\dagger} \phi \\ &- \left(\tilde{\lambda}_{ij} \, \bar{u}_{Ri} \chi_{j} \, \phi + h.c. \right) \,, \end{split}$$

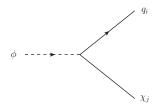


Fig. 2: NP interaction vertex.

with $M_{\chi} = \text{diag}(m_{\chi_1}, m_{\chi_2}, m_{\chi_3})$ and the hierarchy $m_{\chi_1} > m_{\chi_2} > m_{\chi_3}$.

Two benchmark scenarios

- Quasi-Degenerate Freeze-Out (QDF): mass splitting is below 1%
- Single-Flavour Freeze-Out (SFF): mass splitting is above 10%

Phenomenology

Collider Searches:

- Majorana-specific same-sign signature tt + E

Flavour Physics:

- strong limits from $D^0 \bar{D}^0$ mixing
- additional crossed diagram extends the allowed parameter space

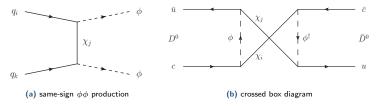


Fig. 3: Majorana-specific Feynman diagrams for collider searches and $D^0 - \bar{D}^0$ mixing.

Relic Density:

- additional u-channel annihilation diagram for $\chi\chi
 ightarrow q ar q$
- p-wave suppression of $\langle\sigma v\rangle$ when annihilating into massless final states in the SFF scenario

Direct Detection:

- $\bar{\chi}\gamma^{\mu}\chi=\bar{\chi}\sigma^{\mu\nu}\chi=0$ \rightarrow spin-dependent scattering limits relevant
- weak constraints from direct detection

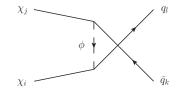


Fig. 4: Majorana-specific *u*-channel annihilation diagram.

Combined Analysis

- $D^0 \bar{D^0}$ mixing and relic density constraints are dominant
- strong m_{ϕ} dependence due to *p*-wave suppression

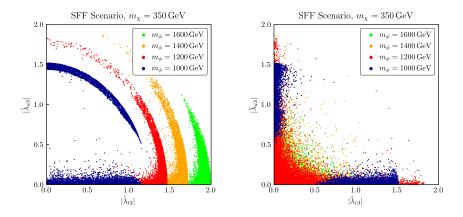


Fig. 5: Allowed couplings in the context of all constraints for the SFF scenario.

Direct CPV in Charm Decays

LHCb measurement

LHCB COLLAB. in [1905.05428]

$$\Delta A_{\rm CP, \ LHCb}^{\rm dir} = A_{\rm CP}(D \to K^+K^-) - A_{\rm CP}(D \to \pi^+\pi^-)$$
$$= (-0.157 \pm 0.029)\%$$

QCD light-cone sum-rule estimation
 KHODJAMIRIAN, PETROV in [1706.07780]

$$\Delta A_{\rm CP,\ LCSR}^{\rm dir} = (0.02\pm0.003)\%$$

- hint at NP in ΔA_{CP}^{dir} ?
- large effects were found in non-flavoured model

ALTMANNSHOFER ET AL. in [1202.2866]

• we use the same approach to estimate size of $\Delta A_{\rm CP}^{\rm dir}$

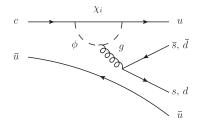


Fig. 6: Penguin diagram of NP D^0 decay.

- general m_{ϕ}^2 suppression in both scenarios
- enhancement in SFF scenario for $m_{\phi} \in [1.0, 1.3] \text{ TeV}$

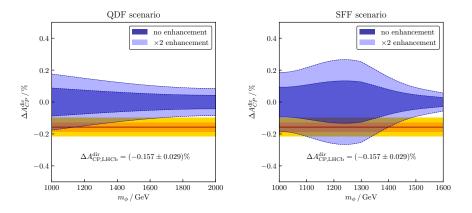


Fig. 7: ΔA_{CP}^{dir} in dependence of m_{ϕ} for the QDF scenario (left) and the SFF scenario (right). In both scenarios the DM mass is fixed to $m_{\chi} = 350 \,\text{GeV}$.

- flavoured DM models generally have a very rich phenomenology
- Majorana nature: new LHC signatures, additional mixing diagram, *u*-channel annihilation and weak direct detection constraints
- up-type flavoured Majorana particles are a viable DM candidate
- both freeze-out scenarios are capable of enhancing $\Delta A_{\rm CP}^{\rm dir}$ significantly

Thank you.