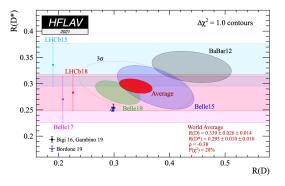
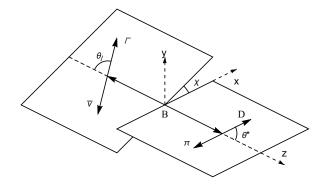
FLASY 2022 9th Workshop on Flavour Symmetries and Consequences in Accelerators and Cosmology June 27 - July 1, 2022 IST Congress Centre, Instituto Superior Técnico Lisbon, Portugal Organised by Centro de Física Teórica de Partículas (CFTP)

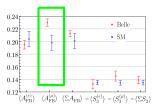
An Event Generator For New Physics in $B \rightarrow D^* \ell \nu$ decay & Angular Asymmetries


Lopamudra Mukherjee

University of Mississippi, USA Talk Based on : 2203.07189, 2206.11283 [hep-ph]


Flavour Changing Charged Current B-decay

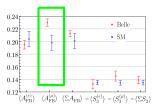
- Semileptonic decays are theoretically clean : Leptonic current is decoupled from the hadronic current.
- Here, we focus on $B \to D^* \ell \nu$ because :
 - Useful in the extraction of $|V_{cb}|$.
 - Testing CKM unitarity.
 - Sensitive probes of New Physics.
 - Test Lepton Flavour Universality of the SM.
 - Persistent hints of NP in au modes and now in μ -modes.


See talk by Monika Blanke

Angular Distribution in $B \rightarrow D^* \ell \nu$

- Belle provided the first time lepton-flavour specific single-differential distribution data for each of the 4 kinematic variables *Phys. Rev. D* 100 (2019), 052007
- They used it to extract V_{cb} and test lepton universality ratio (μ/e).
- The electron and muon data are in good agreement with SM.

Angular Observables

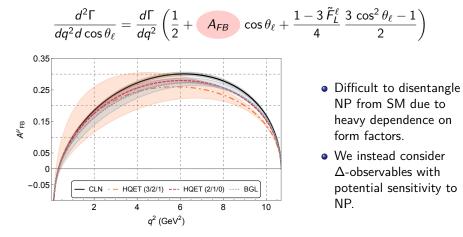


https://arxiv.org/abs/2104.02094

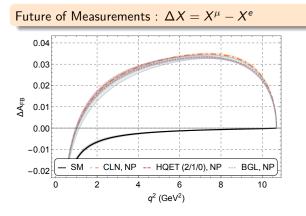
- Study of angular observables using the binned CP-averaged measurements of the four single-differential distributions provided by Belle done by Bobeth et. al Phys. Rev. D 100 (2019), 052007 https://arxiv.org/pdf/2104.02094.pdf
- Observables integrated over the entire q² range.
- Reports a > 2σ anomaly in A^{μ}_{FB} and ~ 4σ anomaly in $\Delta A_{FB} = A^{\mu}_{FB} - A^{e}_{FB}$.

Are these angular observables really clean?

Angular Observables

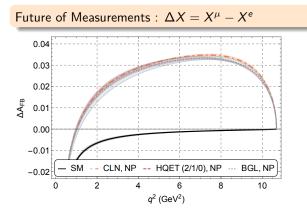

https://arxiv.org/abs/2104.02094

- Study of angular observables using the binned CP-averaged measurements of the four single-differential distributions provided by Belle done by Bobeth et. al Phys. Rev. D 100 (2019), 052007 https://arxiv.org/pdf/2104.02094.pdf
- Observables integrated over the entire q² range.
- Reports a > 2σ anomaly in A^{μ}_{FB} and ~ 4σ anomaly in $\Delta A_{FB} = A^{\mu}_{FB} - A^{e}_{FB}$.


Are these angular observables really clean?

Is it possible to study the distribution of angular observables as function of $q^2?$ - Future physics goals at Belle II/LHCb upgrade

Forward-backward Asymmetry



△ Angular Observables

- In case of SM, there is an almost exact cancellation of the hadronic uncertainties.
- $\Delta A_{FB}^{SM} \approx 0$ except at threshold where $A_{FB}^{\ell} \rightarrow -1.$
- Deviation from SM due to potential NP can be reliably extracted.

△ Angular Observables

- In case of SM, there is an almost exact cancellation of the hadronic uncertainties.
- $\Delta A_{FB}^{SM} \approx 0$ except at threshold where $A_{FB}^{\ell} \rightarrow -1.$
- Deviation from SM due to potential NP can be reliably extracted.

What kinds of NP would provide potential signals in experiments?

MC for NP in $b \rightarrow c \ell \bar{\nu}$ decays

To answer this question we now have a new Monte-Carlo based on Evtgen: *https://github.com/qdcampagna/BTODSTARLNUNP_EVTGEN_Model*

MC for NP in $b \rightarrow c \ell \bar{\nu}$ decays

To answer this question we now have a new Monte-Carlo based on Evtgen: *https://github.com/qdcampagna/BTODSTARLNUNP_EVTGEN_Model*

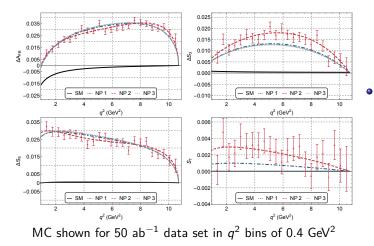
$$\begin{aligned} \mathcal{H}_{eff} &= \frac{G_F V_{cb}}{\sqrt{2}} \qquad \left\{ (1+g_L) \left[\bar{c} \gamma_\mu (1-\gamma_5) b \right] \left[\bar{\ell} \gamma^\mu (1-\gamma_5) \nu_\ell \right] \right. \\ &\left. + g_R \left[\bar{c} \gamma_\mu (1+\gamma_5) b \right] \left[\bar{\ell} \gamma^\mu (1-\gamma_5) \nu_\ell \right] \right. \\ &\left. + g_S \left[\bar{c} b \right] \left[\bar{\ell} (1-\gamma_5) \nu_\ell \right] \right. \\ &\left. + g_P \left[\bar{c} \gamma_5 b \right] \left[\bar{\ell} (1-\gamma_5) \nu_\ell \right] \right. \\ &\left. + g_T \left[\bar{c} \sigma^{\mu\nu} (1-\gamma_5) b \right] \left[\bar{\ell} \sigma_{\mu\nu} (1-\gamma_5) \nu_\ell \right] \right\} + h.c. \end{aligned}$$

MC for NP in $b \rightarrow c \ell \bar{\nu}$ decays

To answer this question we now have a new Monte-Carlo based on Evtgen: *https://github.com/qdcampagna/BTODSTARLNUNP_EVTGEN_Model*

$$\begin{aligned} \mathcal{H}_{eff} &= \frac{G_F V_{cb}}{\sqrt{2}} \qquad \left\{ \begin{pmatrix} (1+g_L) \left[\bar{c} \gamma_\mu (1-\gamma_5) b \right] \left[\bar{\ell} \gamma^\mu (1-\gamma_5) \nu_\ell \right] \right. \\ &+ g_R \left[\bar{c} \gamma_\mu (1+\gamma_5) b \right] \left[\bar{\ell} \gamma^\mu (1-\gamma_5) \nu_\ell \right] \\ &+ g_S \left[\bar{c} b \right] \left[\bar{\ell} (1-\gamma_5) \nu_\ell \right] \\ &+ g_P \left[\bar{c} \gamma_5 b \right] \left[\bar{\ell} (1-\gamma_5) \nu_\ell \right] \\ &+ g_T \left[\bar{c} \sigma^{\mu\nu} (1-\gamma_5) b \right] \left[\bar{\ell} \sigma_{\mu\nu} (1-\gamma_5) \nu_\ell \right] \right\} + h.c. \end{aligned}$$

Caveats :

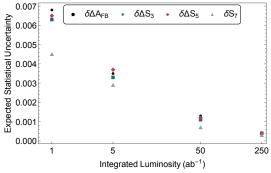

- Neutrinos are always left-handed.
- 2 The scalar matrix element $\langle D^*|\bar{c}b|\bar{B}
 angle=0$
- **3** SM case : $g_L = g_R = g_P = g_T = 0$
- Hadronic matrix elements are expressed in terms of form factors which are non-perturbative objects (cannot be calculated form first principles of QCD).

New Physics Analysis

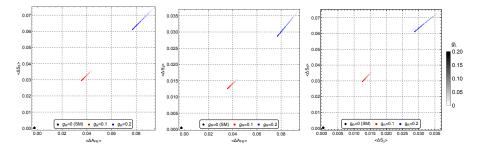
- We pick out a few NP scenarios as listed below.
- The choice is motivated such that :
 - the ratio of semi-leptonic branching fractions is constrained to be within 3% of unity.
 - they are able to explain the "experimental" $\langle \Delta A_{FB} \rangle$: 0.0349 \pm 0.0089.
 - they also satisfy constraints on other angular observables such as $\langle \Delta F_L \rangle^{exp} = -0.0065 \pm 0.0059$ and $\langle \Delta \tilde{F}_L \rangle^{exp} = -0.0107 \pm 0.0142$.

				g _P =0			
				0.14			
				0.12 95% cl Exclusion by ΔA_{FB}			
				68% cl Exclusion by ΔA _{FB}			
	ВL	<i>B</i> R	ØР	0.10			
Scenario 1:	0.06	0.075	0.2 i	0.10 66% G EXCUSSION UNIT			
Scenario 2:	0.08	0.090	0.6 i	0.06			
Scenario 3:	0.07	0.075	0	0.04			
				0.02			
				0.00 0.02 0.04 0.06 0.08 0.10 0.12 0.14			
				gL			

Distributions of Angular Asymmetries



 True CP violating observable S₇ in presence of complex new physics.


Theoretical Predictions & Belle II Sensitivities

	$\langle \Delta A_{FB} \rangle$	$\langle \Delta S_3 \rangle$	$\langle \Delta S_5 \rangle$	$\langle S_7 \rangle$
	%	%	%	$ imes 10^{-3}$
SM:	-0.252 ± 0.004	$0.0441{\pm}0.0007$	$0.0286{\pm}0.0013$	0
NP 1:	$2.89{\pm}0.05$	$1.08 {\pm} 0.04$	$2.44^{+0.02}_{-0.03}$	$0.7{\pm}0.01$
NP 2:	$2.89\substack{+0.05 \\ -0.06}$	$1.49\substack{+0.05\\-0.04}$	$2.43^{+0.02}_{-0.03}$	$2.0{\pm}0.1$
NP 3:	$2.94^{+0.04}_{-0.05}$	$1.04 {\pm} 0.04$	$2.47\substack{+0.03\\-0.02}$	0

- Here we use Belle fiducial
 - $p_T^{\mu,e} > 0.8 \,\, {
 m GeV}$
 - $p_T^{\pi} > 0.1 \,\,\mathrm{GeV}$
 - Angular acceptance of all final state particles : $-0.866 < \cos \theta < 0.956$
- Note that we use the same *p*_T cut for electron and muon since we did not include detector efficiencies for the leptons separately.

Correlated Angular Asymmetries

- If there is NP, then one will observe signals in other angular asymmetries, not just in ΔA_{FB} .
- If experiments measure ΔA_{FB} in future without observing a ΔS_5 (say), then the signature does not indicate new physics.
- The right-handed coupling mainly drives correlation in absence of tensor NP.

Summary & Outlook

- Distributions of angular asymmetries in $B \rightarrow D^* \ell \nu$ are interesting and important.
- We expect angular asymmetries to provide tighter constraints on NP LFU couplings.
- We propose Δ-observables to be the future of experimental measurements for this mode.
- We now have the MC generator for NP studies in such decays.
- We have pointed out possible NP scenarios that can generate $\Delta A_{FB} \sim 3\%$ and can be extracted by experiments.
- A lot can be achieved at and beyond the 50 ab^{-1} of Belle II.

Summary & Outlook

- Distributions of angular asymmetries in $B \rightarrow D^* \ell \nu$ are interesting and important.
- We expect angular asymmetries to provide tighter constraints on NP LFU couplings.
- We propose Δ-observables to be the future of experimental measurements for this mode.
- We now have the MC generator for NP studies in such decays.
- We have pointed out possible NP scenarios that can generate $\Delta A_{FB} \sim 3\%$ and can be extracted by experiments.
- A lot can be achieved at and beyond the 50 ab^{-1} of Belle II.

THANK YOU!