Absolute v mass and DM stability from flavour

MAX-PLANCK-INSTITUT FÜR KERNPHYSIK HEIDELBERG

Salvador Centelles Chuliá (MPIK Heidelberg) Ricardo Cepedello (Würzburg university) Omar Medina (IFIC Valencia)

<u>2204.12517</u>

FLASY 2022 | 9th Workshop on Flavour Symmetries and Consequences in Accelerators and Cosmology

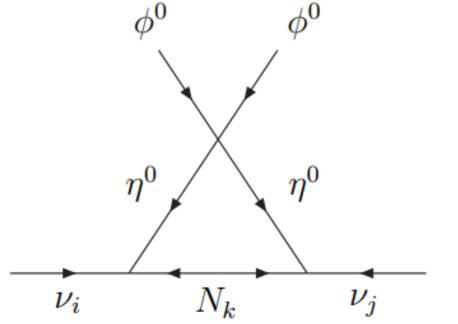
June 27 - July 1, 2022

IST Congress Centre, Instituto Superior Técnico Lisbon, Portugal

Organised by Centro de Física Teórica de Partículas (CFTP)

Flavoured scotogenic: $\Sigma(81)$

- Scotogenic framework: <u>hep-ph/0601225</u> by Ernest Ma
- Neutrino masses come at the 1-loop level. The lightest particle running in the loop is stabilized by a Z2 symmetry.
- We promote the Z2 symmetry to a non-Abelian group $\Sigma(81)$.



$\Sigma(81)$ group

• Why Σ(81)?

 Nice property: some representations form a close set under the group tensor products. We call these 'visible representations' (as opposed to 'dark representations')

Visible representations: $\{1_{ij}, 3_D, \overline{3}_D\}$, $1_{ij} \times 3_D(\overline{3}_D) = 3_D(\overline{3}_D)$, $3_D(\overline{3}_D) \times 3_D(\overline{3}_D) = \overline{3}_D(3_D)$, $3_D(\overline{3}_D) \times \overline{3}_D(3_D) = 1_{ij}$

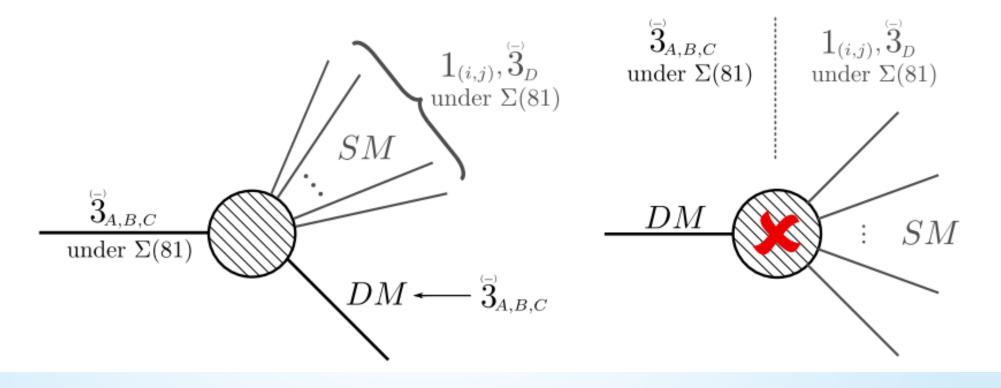
<u>Closed set</u>

Dark representations: $\{3_A, \overline{3}_A, 3_B, \overline{3}_B, 3_C, \overline{3}_C\}$,

Not a closed set

DM stability

 Non-abelian version of the stability mechanism shown in <u>1812.01599</u>. Lightest dark sector particle is stable.



- Not the only group with this property
- Additional features: SM in triplets, leads to strong predictions in mixing angles, neutrino masses and v0ee. No need of extra symmetries or flavons.

The UV complete model

		Fields	${ m SU}(3)_{ m C} imes { m SU}(2)_{ m L} imes { m U}(1)_{ m Y}$	$\Sigma(81)$
Γ	Visible	L	(1, 2, -1/2)	3_D
		ℓ_R	(1 , 1 ,-1)	$ar{3}_D$
		H	$({f 1},{f 2},1/2)$	$ar{3}_D$
Γ	Dark	$N_{L,R}$	$({f 1},{f 1},0)$	3_A
		η	$({f 1},{f 2},1/2)$	3_A
		ϕ	$({f 1},{f 2},1/2)$	$ar{3}_A$

- SM is visible, new particles are dark sector. Lightest is DM.
- No new SSB scalar apart from the Higgs doublet.
- Flavoured 3HDM

Charged lepton masses

• SM mechanism + flavour

$$\begin{aligned} \mathcal{L}_{Y}^{V} &= Y_{1}^{e} \sum_{i=1}^{3} \bar{L}_{i} \ell_{R_{i}} H_{i} \\ &+ Y_{2}^{e} \left(\bar{L}_{1} \ell_{R_{3}} H_{2} + \bar{L}_{2} \ell_{R_{1}} H_{3} + \bar{L}_{3} \ell_{R_{2}} H_{1} \right) \\ &+ Y_{3}^{e} \left(\bar{L}_{1} \ell_{R_{2}} H_{3} + \bar{L}_{2} \ell_{R_{3}} H_{1} + \bar{L}_{3} \ell_{R_{1}} H_{2} \right) \\ &+ \text{h.c.} , \end{aligned}$$

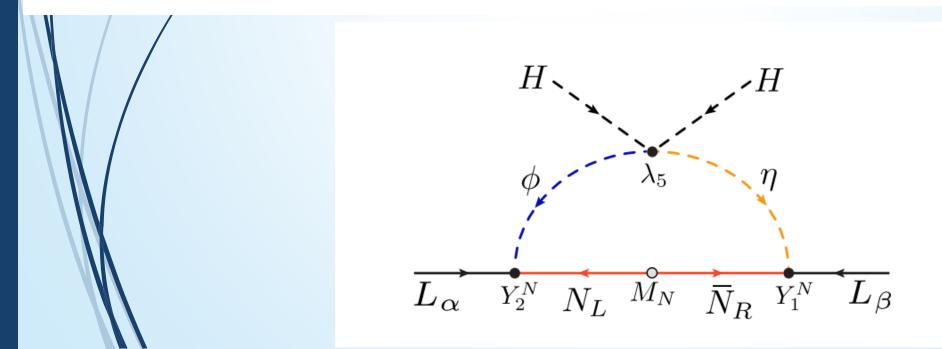
$$M_e = \frac{1}{\sqrt{2}} \begin{pmatrix} Y_1^e v 1 & Y_3^e v 3 & Y_2^e v 2 \\ Y_2^e v 3 & Y_1^e v 2 & Y_3^e v 1 \\ Y_3^e v 2 & Y_2^e v 1 & Y_1^e v 3 \end{pmatrix}$$

Neutrino masses

• Scotogenic mechanism <u>hep-ph/0601225</u> (+ flavour). No need of 'ad hoc' Z_2 stabilizing symmetry: flavour does it for you.

$$\begin{aligned} \mathcal{L}_{Y}^{D} &= M_{N} \left(\bar{N}_{L_{1}} N_{R_{1}} + \bar{N}_{L_{2}} N_{R_{2}} + \bar{N}_{L_{3}} N_{R_{3}} \right) \\ &+ Y_{1}^{N} \left(L_{1} \bar{N}_{R_{2}} \eta_{1} + L_{2} \bar{N}_{R_{3}} \eta_{2} + L_{3} \bar{N}_{R_{1}} \eta_{3} \right) \\ &+ Y_{2}^{N} \left(L_{1} N_{L_{1}} \phi_{2} + L_{2} N_{L_{2}} \phi_{3} + L_{3} N_{L_{3}} \phi_{1} \right) \\ &+ \text{h.c.}. \end{aligned}$$

$$\begin{split} \mathcal{V}_{\nu} &= \lambda_{5}^{(1)} \left[(H_{1}\eta_{2}^{\dagger})(H_{1}\phi_{1}^{\dagger}) + (H_{2}\eta_{3}^{\dagger})(H_{2}\phi_{2}^{\dagger}) + (H_{3}\eta_{1}^{\dagger})(H_{3}\phi_{3}^{\dagger}) \right] \\ &+ \lambda_{5}^{(2)} \left[(H_{1}\eta_{1}^{\dagger})(H_{2}\phi_{3}^{\dagger}) + (H_{1}\eta_{3}^{\dagger})(H_{3}\phi_{2}^{\dagger}) + (H_{2}\eta_{2}^{\dagger})(H_{3}\phi_{1}^{\dagger}) \right] \\ &+ \text{h.c.} \,. \end{split}$$



Neutrino masses

- There is a clear pattern in both mass matrices: flavour predictions!
- The diagonaless neutrino texture is <u>NOT</u> a prediction of $\Sigma(81)$. We could generate them by adding different triplets to the model. But in this setup the 0s are symmetry protected.

$$M_{\nu} \sim \frac{1}{2} \begin{pmatrix} 0 & C_1 v_3^2 + C_2 v_1 v_2 & C_1 v_2^2 + C_2 v_1 v_3 \\ C_1 v_3^2 + C_2 v_1 v_2 & 0 & C_1 v_1^2 + C_2 v_2 v_3 \\ C_1 v_2^2 + C_2 v_1 v_3 & C_1 v_1^2 + C_2 v_2 v_3 & 0 \end{pmatrix}$$

Neutrino mass scale

Consider a diagonal-less Majorana neutrino mass matrix

$$A = \begin{pmatrix} 0 & a & b \\ a & 0 & c \\ b & c & 0 \end{pmatrix}, \quad \text{with } a, b, c \in \mathbb{C}$$

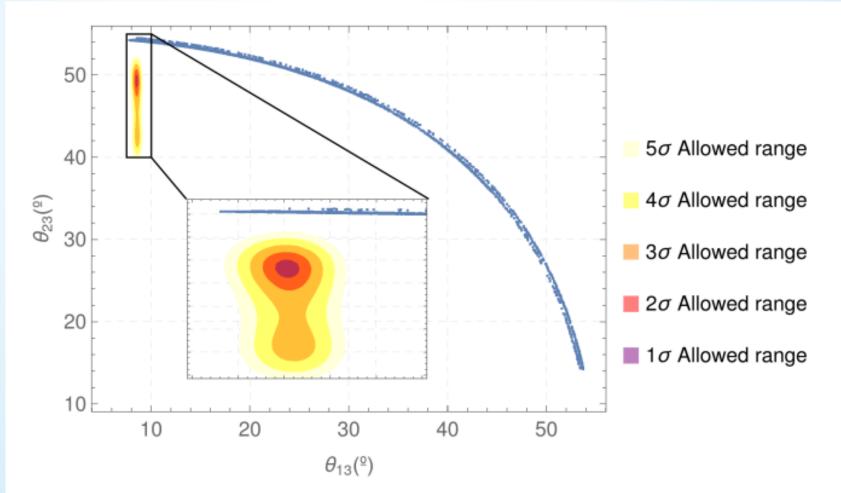
• Diagonalized as usual as

 $U^T A U = m_d = \text{diagonal}(m_1, m_2, m_3)$ $U^{\dagger} A^{\dagger} A U = m_d^2,$

$$\begin{array}{l} \text{. We can compute the traces of } A^{\dagger}A \text{ and } \left(A^{\dagger}A\right)^{2} \\ \text{and notic} \\ \hline \frac{1}{2} \begin{bmatrix} Tr(A^{\dagger}A \end{bmatrix} & m_{\text{lightest}}^{\text{NO}} \approx 2.8 \times 10^{-2} \text{ eV}, \\ m_{\text{lightest}}^{\text{IO}} \approx 7.5 \times 10^{-4} \text{ eV}. \\ \hline m_{\text{heaviest}}^{\text{IO}} \end{array}$$

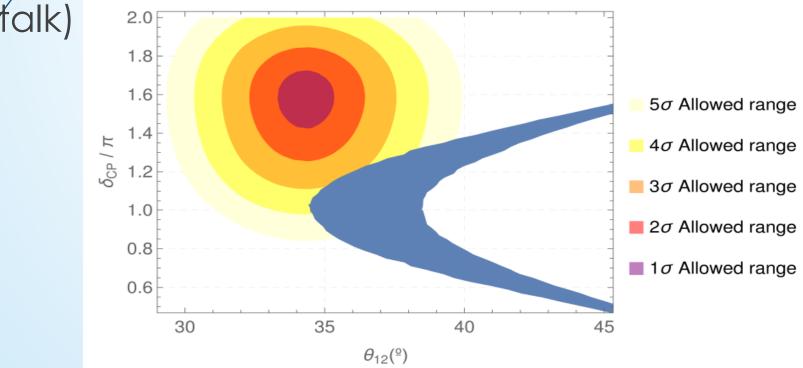
Mixing predictions

• If NO is assumed, a strong but ruled out correlation between θ_{13} and θ_{23} appears. The model is <u>not</u> compatible with NO!



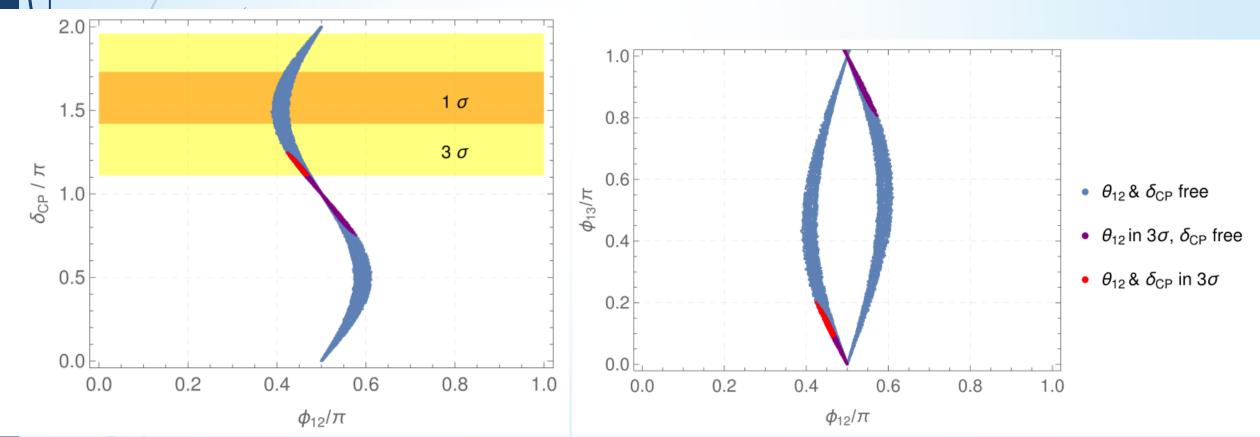
Mixing predictions

- . If instead we take IO we find a number of predictions:
- θ_{13} and θ_{23} can be fitted (no predictive pattern)
- Strong correlation θ_{12} vs δ_{CP} . 3σ tension if we believe δ_{CP} measurements, but best fit θ_{12} if we allow $\delta_{CP} \sim \pi$. **Testable prediction!** Stay tuned to Nova/T2K results (see Mariam's



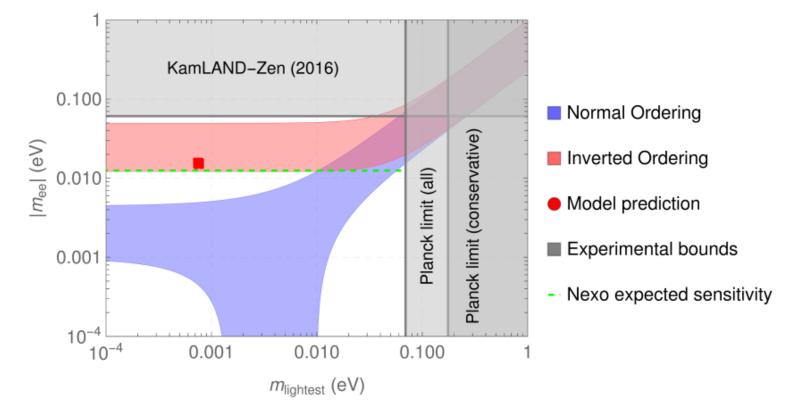
CP Violating phases

- Strong correlation between the three
- Only δ_{CP} is constrained by oscillation experiments
- . But ϕ_{12} and ϕ_{13} are relevant for v0ee



Neutrinoless double beta decay

- Ordering is predicted
- Absolute neutrino scale is predicted
- Majorana phases are correlated
- Strong prediction for v0ee!



2204.12517

Conclusions

- Minimal model:
 - Scotogenic field content
 - Multipurpose $\Sigma(81)$ symmetry does all: DM stabiltiy & flavour
 - Strong flavour predictions:
 - Inverted Ordering
 - Neutrino mass $m_{
 m light} pprox 10^{-4}~{
 m eV}$
 - . Testable correlation between $heta_{12}$ and δ_{CP}
 - Correlations between CPV phases
 - $|m_{ee}| \approx 0.018 \text{ eV}$

Thank you for your attention!

Backup: Neutrino mass scale

Consider a diagonal-less Majorana neutrino mass matrix

$$A = \begin{pmatrix} 0 & a & b \\ a & 0 & c \\ b & c & 0 \end{pmatrix}, \quad \text{with } a, b, c \in \mathbb{C}$$

$$Tr(A^{\dagger}A) = 2(|a|^{2} + |b|^{2} + |c|^{2}) = m_{1}^{2} + m_{2}^{2} + m_{3}^{2},$$

$$Tr\left[(A^{\dagger}A)^{2}\right] = 2(|a|^{2} + |b|^{2} + |c|^{2})^{2} = m_{1}^{4} + m_{2}^{4} + m_{3}^{4}.$$

$$m_3^2 = (m_1 \pm m_2)^2 \quad m_3^{NO} = m_1^{NO} + m_2^{NO}, \ m_2^{IO} = m_1^{IO} + m_3^{IO}, \ m_2^{IO} = m_1^{IO} + m_3^{IO},$$

 $\frac{1}{2}\sum m_i = m_{\text{heaviest}}$

Back up: Sigma(81)

$$\mathbf{1}_{(k,l)} \times \mathbf{3}_{D}(\bar{\mathbf{3}}_{D}) = \mathbf{3}_{D}(\bar{\mathbf{3}}_{D}), \quad \mathbf{3}_{D} \times \mathbf{3}_{D} = \bar{\mathbf{3}}_{D} + \bar{\mathbf{3}}_{D} + \bar{\mathbf{3}}_{D}, \quad \mathbf{3}_{D} \times \bar{\mathbf{3}}_{D} = \mathbf{1}_{(k,l)}$$

$$\begin{pmatrix} x_{1} \\ x_{2} \\ x_{3} \end{pmatrix}_{\mathbf{3}_{D}} \otimes \begin{pmatrix} y_{1} \\ y_{2} \\ y_{3} \end{pmatrix}_{\mathbf{3}_{D}} = \sum_{k=0,1,2} [(x_{1}y_{1} + \omega^{2k}x_{2}y_{2} + \omega^{k}x_{3}y_{3})_{\mathbf{1}_{(k,0)}} \oplus (x_{2}y_{3} + \omega^{2k}x_{3}y_{1} + \omega^{k}x_{1}y_{2})_{\mathbf{1}_{(k,2)}} \oplus (x_{3}y_{2} + \omega^{2k}x_{3}y_{1} + \omega^{k}x_{2}y_{2})_{\mathbf{1}_{(k,2)}} \oplus (x_{3}y_{2} + \omega^{2k}x_{3}y_{1} + \omega^{k}x_{2}y_{1})_{\mathbf{1}_{(k,1)}}].$$

$$\begin{pmatrix} x_{1} \\ x_{2} \\ x_{3} \end{pmatrix}_{\mathbf{3}_{D}} \otimes \begin{pmatrix} y_{1} \\ y_{2} \\ y_{3} \end{pmatrix}_{\mathbf{3}_{D}} = \begin{pmatrix} x_{2}y_{3} \\ x_{3}y_{3} \\ x_{3}y_{3} \\ y_{3} \end{pmatrix}_{\mathbf{3}_{D}} \oplus \begin{pmatrix} x_{3}y_{2} \\ x_{3}y_{3} \\ x_{2}y_{1} \end{pmatrix}_{\mathbf{3}_{D}}, \qquad (x_{1}x_{0}, \infty) \begin{pmatrix} y_{1} \\ y_{2} \\ y_{3} \\ y_{3} \end{pmatrix}_{\mathbf{3}_{D}} = \begin{pmatrix} xy_{1} \\ \omega^{k}xy_{2} \\ \omega^{k}xy_{3} \\ \omega^{k}xy_{1} \\ \omega^{k}xy_{2} \end{pmatrix}_{\mathbf{3}_{D}}, \qquad (x_{1}x_{0}, \infty) \begin{pmatrix} y_{1} \\ y_{2} \\ y_{3} \\ y_{3} \end{pmatrix}_{\mathbf{3}_{D}} = \begin{pmatrix} xy_{3} \\ \omega^{k}xy_{1} \\ \omega^{k}xy_{2} \\ \omega^{k}xy_{3} \\ \omega^{k}xy_{1} \\ \omega^{k}xy_{2} \end{pmatrix}_{\mathbf{3}_{D}}, \qquad (x_{1}x_{0}, \infty) \begin{pmatrix} y_{1} \\ y_{2} \\ y_{3} \\ y_{3} \end{pmatrix}_{\mathbf{3}_{D}} = \begin{pmatrix} xy_{2} \\ \omega^{k}xy_{3} \\ \omega^{k}xy_{1} \\ \omega^{k}xy_{2} \end{pmatrix}_{\mathbf{3}_{D}}, \qquad (x_{1}x_{0}, \infty) \begin{pmatrix} y_{1} \\ y_{2} \\ y_{3} \\ y_{3} \end{pmatrix}_{\mathbf{3}_{D}} = \begin{pmatrix} xy_{2} \\ \omega^{k}xy_{3} \\ \omega^{k}xy_{1} \\ \omega^{k}xy_{2} \end{pmatrix}_{\mathbf{3}_{D}}, \qquad (x_{1}x_{0}, \infty) \begin{pmatrix} y_{1} \\ y_{2} \\ y_{3} \\ y_{3} \end{pmatrix}_{\mathbf{3}_{D}} = \begin{pmatrix} xy_{2} \\ \omega^{k}xy_{3} \\ \omega^{k}xy_{1} \\ \omega^{k}xy_{2} \end{pmatrix}_{\mathbf{3}_{D}}, \qquad (x_{1}x_{0}, \infty) \begin{pmatrix} y_{1} \\ y_{2} \\ y_{3} \\ y_{3} \end{pmatrix}_{\mathbf{3}_{D}} = \begin{pmatrix} xy_{2} \\ \omega^{k}xy_{3} \\ \omega^{k}xy_{1} \\ \omega^{k}xy_{2} \end{pmatrix}_{\mathbf{3}_{D}}, \qquad (x_{1}x_{0}, \infty) \begin{pmatrix} y_{1} \\ y_{2} \\ y_{3} \\ y_{3} \end{pmatrix}_{\mathbf{3}_{D}} = \begin{pmatrix} xy_{2} \\ \omega^{k}xy_{3} \\ \omega^{k}xy_{1} \\ \omega^{k}xy_{2} \end{pmatrix}_{\mathbf{3}_{D}}, \qquad (x_{1}x_{0}, \infty) \begin{pmatrix} y_{1} \\ y_{2} \\ y_{3} \\ y_{3} \end{pmatrix}_{\mathbf{3}_{D}} = \begin{pmatrix} xy_{2} \\ \omega^{k}xy_{3} \\ \omega^{k}xy_{1} \\ \omega^{k}xy_{2} \end{pmatrix}_{\mathbf{3}_{D}} \end{pmatrix}$$

Back up: other scoto groups

S4: doublets and singlet in visible reps, triplets in dark reps visible reps, triplete en dark rep ?

T': triplets and singlets in visible reps, doublets in dark

Sigma(18) doublets and singlets in visible reps, more doublets in dark reps 🖓

Sigma(32) and Sigma(50) Complicated but visible doublets. X