

FLASY 22 – 9th Workshop on Flavour Symmetries and Consequences in Accelerators and Cosmology

Lisbon, Portugal, June 27 – July 1, 2022

Leptogenesis assisted by complex scalar singlet

Débora Barreiros

debora.barreiros@tecnico.ulisboa.pt

CFTP/IST, U. Lisbon

In collaboration with: H. B. Câmara, R. G. Felipe and F. R. Joaquim arXiv: **2207.XXXX** [hep-ph] (in preparation)

REPÚBLICA PORTUGUESA

Cômpete

The Standard Model cannot explain:

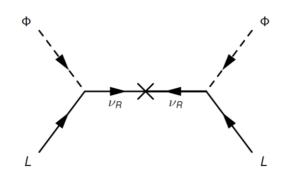
- Neutrino flavour oscillations (imply existence of neutrino masses and lepton mixing)
- Observed Baryon Asymmetry of the Universe

The Standard Model cannot explain:

- Neutrino flavour oscillations (imply existence of neutrino masses and lepton mixing)
- Observed Baryon Asymmetry of the Universe

Straightforward and elegant solution:

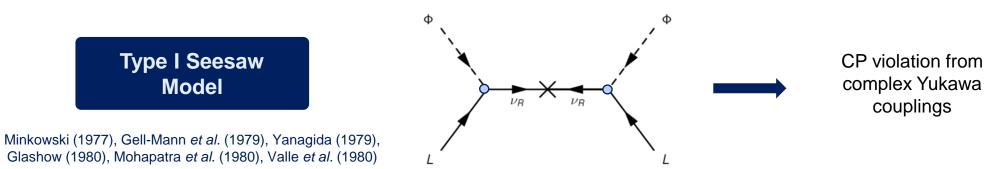
Minkowski (1977), Gell-Mann *et al.* (1979), Yanagida (1979), Glashow (1980), Mohapatra *et al.* (1980), Valle *et al.* (1980)



The Standard Model cannot explain:

- Neutrino flavour oscillations (imply existence of neutrino masses and lepton mixing)
- Observed Baryon Asymmetry of the Universe

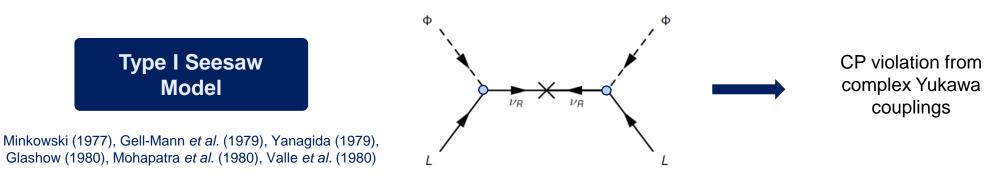
Straightforward and elegant solution:



The Standard Model cannot explain:

- Neutrino flavour oscillations (imply existence of neutrino masses and lepton mixing)
- Observed Baryon Asymmetry of the Universe

Straightforward and elegant solution:



Our approach:

Complex scalar singlet extension of type-I seesaw model

Can **CP be spontaneously broken** by the complex VEV of complex scalar singlets and explain **CP** violation both at the leptogenesis scale and electroweak scale?

Add to the SM n_R RH neutrinos, n_H scalar doublets and n_S complex scalar singlets:

$$-\mathcal{L}_{\text{Yuk.}} = \overline{\ell}_L \mathbf{Y}^a_{\ell} \Phi_a e_R + \overline{\ell}_L \mathbf{Y}^{a*}_D \widetilde{\Phi}_a \nu_R + \frac{1}{2} \overline{\nu_R} \left(\mathbf{M}^0_R + \mathbf{Y}^k_R S_k + \mathbf{Y}'^k_R S_k^* \right) \nu^c_R + \text{H.c.}$$

Add to the SM n_R RH neutrinos, n_H scalar doublets and n_S complex scalar singlets:

$$-\mathcal{L}_{\text{Yuk.}} = \overline{\ell}_L \mathbf{Y}^a_{\ell} \Phi_a e_R + \overline{\ell}_L \mathbf{Y}^{a*}_D \widetilde{\Phi}_a \nu_R + \frac{1}{2} \overline{\nu_R} \left(\mathbf{M}^0_R + \mathbf{Y}^k_R S_k + \mathbf{Y}'^k_R S_k^* \right) \nu^c_R + \text{H.c.}$$

+ assume the Lagrangian to be CP symmetric (all parameters are real)

Add to the SM n_R RH neutrinos, n_H scalar doublets and n_S complex scalar singlets:

$$-\mathcal{L}_{\text{Yuk.}} = \overline{\ell}_L \mathbf{Y}^a_{\ell} \Phi_a e_R + \overline{\ell}_L \mathbf{Y}^{a*}_D \widetilde{\Phi}_a \nu_R + \frac{1}{2} \overline{\nu_R} \left(\mathbf{M}^0_R + \mathbf{Y}^k_R S_k + \mathbf{Y}'^k_R S_k^* \right) \nu^c_R + \text{H.c.}$$

+ assume the Lagrangian to be CP symmetric (all parameters are real)

Scalar singlets acquire VEV at $T \gg v_{\rm EW}$

$$\langle S_k \rangle = \frac{u_k \, e^{i\theta_k}}{\sqrt{2}}$$

Heavy-neutrino mass generation $\mathbf{M}_{R} = \mathbf{M}_{R}^{0} + \frac{u_{k}}{\sqrt{2}} \left(\mathbf{Y}_{R}^{k} e^{i\theta_{k}} + \mathbf{Y}_{R}^{\prime k} e^{-i\theta_{k}} \right)$

CP violation is dynamically generated from the vacuum and transmitted to the heavy-neutrino mass matrix at high energies

Add to the SM n_R RH neutrinos, n_H scalar doublets and n_S complex scalar singlets:

$$-\mathcal{L}_{\text{Yuk.}} = \overline{\ell}_L \mathbf{Y}^a_{\ell} \Phi_a e_R + \overline{\ell}_L \mathbf{Y}^{a*}_D \widetilde{\Phi}_a \nu_R + \frac{1}{2} \overline{\nu_R} \left(\mathbf{M}^0_R + \mathbf{Y}^k_R S_k + \mathbf{Y}'^k_R S_k^* \right) \nu^c_R + \text{H.c.}$$

+ assume the Lagrangian to be CP symmetric (all parameters are real)

Scalar singlets acquire VEV at $T \gg v_{\rm EW}$

$$\langle S_k \rangle = \frac{u_k \, e^{i\theta_k}}{\sqrt{2}}$$

Heavy-neutrino mass generation $\mathbf{M}_{R} = \mathbf{M}_{R}^{0} + \frac{u_{k}}{\sqrt{2}} \left(\mathbf{Y}_{R}^{k} e^{i\theta_{k}} + \mathbf{Y}_{R}^{\prime k} e^{-i\theta_{k}} \right)$

CP violation is dynamically generated from the vacuum and transmitted to the heavy-neutrino mass matrix at high energies

Scalar doublets acquire VEV at the EW scale

 $\left\langle \Phi_a^0 \right\rangle = \frac{v_a}{\sqrt{2}}$

Charged-lepton and light-neutrino mass generation

$$\mathbf{M}_{\ell} = \frac{v_a}{\sqrt{2}} \mathbf{Y}_{\ell}^a \quad \mathbf{M}_{\nu} = -\frac{v_a^2}{2} \mathbf{Y}_D \mathbf{M}_R^{-1} \mathbf{Y}_D^T$$

CP violation is communicated to leptonic sector at low energies

Add to the SM n_R RH neutrinos, n_H scalar doublets and n_S complex scalar singlets:

$$-\mathcal{L}_{\text{Yuk.}} = \overline{\ell}_L \mathbf{Y}^a_{\ell} \Phi_a e_R + \overline{\ell}_L \mathbf{Y}^{a*}_D \widetilde{\Phi}_a \nu_R + \frac{1}{2} \overline{\nu_R} \left(\mathbf{M}^0_R + \mathbf{Y}^k_R S_k + \mathbf{Y}'^k_R S_k^* \right) \nu^c_R + \text{H.c.}$$

+ assume the Lagrangian to be CP symmetric (all parameters are real)

Scalar singlets acquire VEV at $T \gg v_{\rm EW}$

$$\langle S_k \rangle = \frac{u_k \, e^{i\theta_k}}{\sqrt{2}}$$

Heavy-neutrino mass generation $\mathbf{M}_R = \mathbf{M}_R^0 + rac{u_k}{\sqrt{2}} \left(\mathbf{Y}_R^k e^{i heta_k} + \mathbf{Y}_R'^k e^{-i heta_k}
ight)$

CP violation is dynamically generated from the vacuum and transmitted to the heavy-neutrino mass matrix at high energies

Scalar doublets acquire VEV at the EW scale

 $\left\langle \Phi_a^0 \right\rangle = \frac{v_a}{\sqrt{2}}$

Charged-lepton and light-neutrino mass generation

$$\mathbf{M}_{\ell} = \frac{v_a}{\sqrt{2}} \mathbf{Y}_{\ell}^a \quad \mathbf{M}_{\nu} = -\frac{v_a^2}{2} \mathbf{Y}_D \mathbf{M}_R^{-1} \mathbf{Y}_D^T$$

CP violation is communicated to leptonic sector at low energies

SCPV is the **source of CP violation** both at **high energies** ($\varepsilon_{CP} \neq 0$ at leptogenesis scale) and **low energies** (non-trivial Dirac and Majorana phases at the EW scale)

Complex scalar singlet extension of the Type-I Seesaw:

Yukawa and mass terms

 $\bar{\ell}_L \mathbf{Y}_D^a \tilde{\Phi}_a \nu_R + \frac{1}{2} \overline{\nu_R} \left(\mathbf{M}_R^0 + \mathbf{Y}_R^k S_k + \mathbf{Y}_R'^k S_k^* \right) \nu_R^c + \text{H.c.}$

Scalar interactions

$$\mu_{ab,i}(\Phi_a^{\dagger}\Phi_b)S_i + \mu_{ijk}S_i^*S_jS_k + \mu_{ijk}'S_iS_jS_k + \text{H.c.}$$

Complex scalar singlet extension of the Type-I Seesaw:

Yukawa and mass terms

 $\overline{\ell}_L \mathbf{Y}_D^a \widetilde{\Phi}_a \nu_R + \frac{1}{2} \overline{\nu_R} \left(\mathbf{M}_R^0 + \mathbf{Y}_R^k S_k + \mathbf{Y}_R'^k S_k^* \right) \nu_R^c + \text{H.c.}$

Scalar interactions

 $\mu_{ab,i}(\Phi_a^{\dagger}\Phi_b)S_i + \mu_{ijk}S_i^*S_jS_k + \mu_{ijk}'S_iS_jS_k + \text{H.c.}$

 $S_{k} = \frac{1}{\sqrt{2}} \left(u_{k} e^{i\theta_{k}} + S_{\mathrm{R}k} + iS_{\mathrm{I}k} \right)$ $\mathbf{V}_{L}^{\dagger} \mathbf{M}_{\ell} \mathbf{V}_{R} = \mathrm{diag} \left(m_{e}, m_{\mu}, m_{\tau} \right)$ $\mathbf{U}_{R}^{\dagger} \mathbf{M}_{R} \mathbf{U}_{R}^{*} = \mathrm{diag} \left(M_{1}, \cdots, M_{n_{R}} \right)$ $\mathbf{V}^{T} \mathcal{M}_{S}^{2} \mathbf{V} = \mathrm{diag} \left(m_{h_{1}}^{2}, \cdots, m_{h_{2n_{S}}}^{2} \right)$

using:

 $\overline{\ell}_{L\alpha} \mathbf{Y}^a_{\alpha i} P_R \widetilde{\Phi}_a N_i + \frac{M_i}{2} \overline{N}_i N^c_i + \overline{N}_i \left(\mathbf{\Delta}^k_{ij} P_L + \mathbf{\Delta}^{*k}_{ij} P_R \right) N^c_j h_k + \text{H.c.}$

 $\tilde{\mu}_{ab,p}(\Phi_a^{\dagger}\Phi_b)h_p + \tilde{\mu}_{lpq}h_lh_ph_q$

Complex scalar singlet extension of the Type-I Seesaw:

Yukawa and mass terms

$$\overline{\ell}_L \mathbf{Y}_D^a \widetilde{\Phi}_a \nu_R + \frac{1}{2} \overline{\nu_R} \left(\mathbf{M}_R^0 + \mathbf{Y}_R^k S_k + \mathbf{Y}_R'^k S_k^* \right) \nu_R^c + \text{H.c.}$$

Scalar interactions

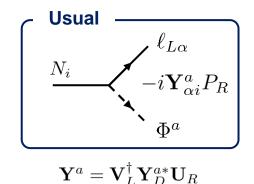
 $\mu_{ab,i}(\Phi_a^{\dagger}\Phi_b)S_i + \mu_{ijk}S_i^*S_jS_k + \mu_{ijk}'S_iS_jS_k + \text{H.c.}$

 $S_{k} = \frac{1}{\sqrt{2}} \left(u_{k} e^{i\theta_{k}} + S_{\mathrm{R}k} + iS_{\mathrm{I}k} \right)$ $\mathbf{V}_{L}^{\dagger} \mathbf{M}_{\ell} \mathbf{V}_{R} = \mathrm{diag} \left(m_{e}, m_{\mu}, m_{\tau} \right)$ $\mathbf{U}_{R}^{\dagger} \mathbf{M}_{R} \mathbf{U}_{R}^{*} = \mathrm{diag} \left(M_{1}, \cdots, M_{n_{R}} \right)$ $\mathbf{V}^{T} \mathcal{M}_{S}^{2} \mathbf{V} = \mathrm{diag} \left(m_{h_{1}}^{2}, \cdots, m_{h_{2n_{S}}}^{2} \right)$

using:

 $\overline{\ell}_{L\alpha} \mathbf{Y}^a_{\alpha i} P_R \widetilde{\Phi}_a N_i + \frac{M_i}{2} \overline{N}_i N^c_i + \overline{N}_i \left(\mathbf{\Delta}^k_{ij} P_L + \mathbf{\Delta}^{*k}_{ij} P_R \right) N^c_j h_k + \text{H.c.}$

 $\tilde{\mu}_{ab,p}(\Phi_a^{\dagger}\Phi_b)h_p + \tilde{\mu}_{lpq}h_lh_ph_q$



Complex scalar singlet extension of the Type-I Seesaw:

Yukawa and mass terms

$$\overline{\ell}_L \mathbf{Y}_D^a \tilde{\Phi}_a \nu_R + \frac{1}{2} \overline{\nu_R} \left(\mathbf{M}_R^0 + \mathbf{Y}_R^k S_k + \mathbf{Y}_R'^k S_k^* \right) \nu_R^c + \text{H.c.}$$

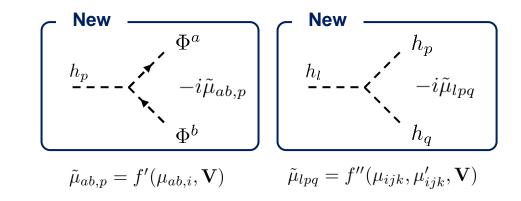
Scalar interactions

 $\mu_{ab,i}(\Phi_a^{\dagger}\Phi_b)S_i + \mu_{ijk}S_i^*S_jS_k + \mu_{ijk}'S_iS_jS_k + \text{H.c.}$

 $S_{k} = \frac{1}{\sqrt{2}} \left(u_{k} e^{i\theta_{k}} + S_{\mathrm{R}k} + iS_{\mathrm{I}k} \right)$ $\mathbf{V}_{L}^{\dagger} \mathbf{M}_{\ell} \mathbf{V}_{R} = \mathrm{diag} \left(m_{e}, m_{\mu}, m_{\tau} \right)$ $\mathbf{U}_{R}^{\dagger} \mathbf{M}_{R} \mathbf{U}_{R}^{*} = \mathrm{diag} \left(M_{1}, \cdots, M_{n_{R}} \right)$ $\mathbf{V}^{T} \mathbf{\mathcal{M}}_{S}^{2} \mathbf{V} = \mathrm{diag} \left(m_{h_{1}}^{2}, \cdots, m_{h_{2n_{S}}}^{2} \right)$

using:

$$\overline{\ell}_{L\alpha} \mathbf{Y}^a_{\alpha i} P_R \widetilde{\Phi}_a N_i + \frac{M_i}{2} \overline{N}_i N_i^c + \overline{N}_i \left(\mathbf{\Delta}^k_{ij} P_L + \mathbf{\Delta}^{*k}_{ij} P_R \right) N_j^c h_k + \text{H.c.}$$

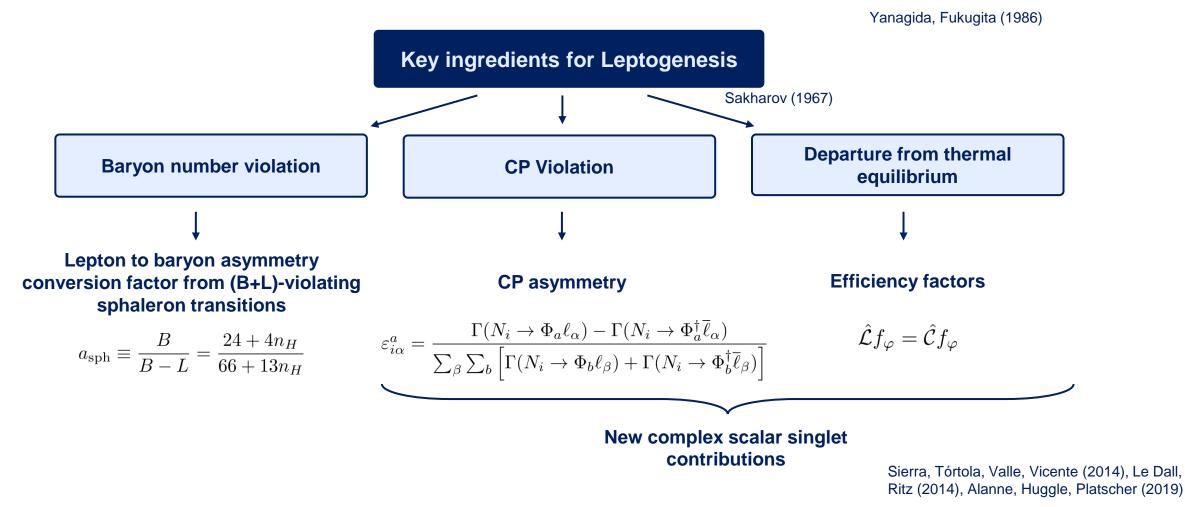


 $\tilde{\mu}_{ab,p}(\Phi_a^{\dagger}\Phi_b)h_p + \tilde{\mu}_{lpq}h_lh_ph_q$

Leptogenesis assisted by complex scalar singlet

Lepton asymmetry is dynamically generated via out-of-equilibrium decays of the heavy neutrinos

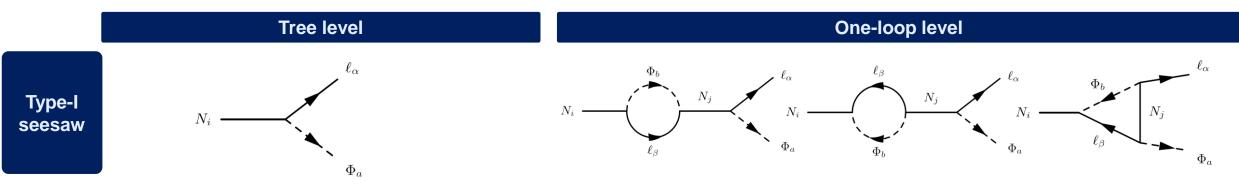
added to the SM, and later transformed into baryon asymmetry via sphaleron processes



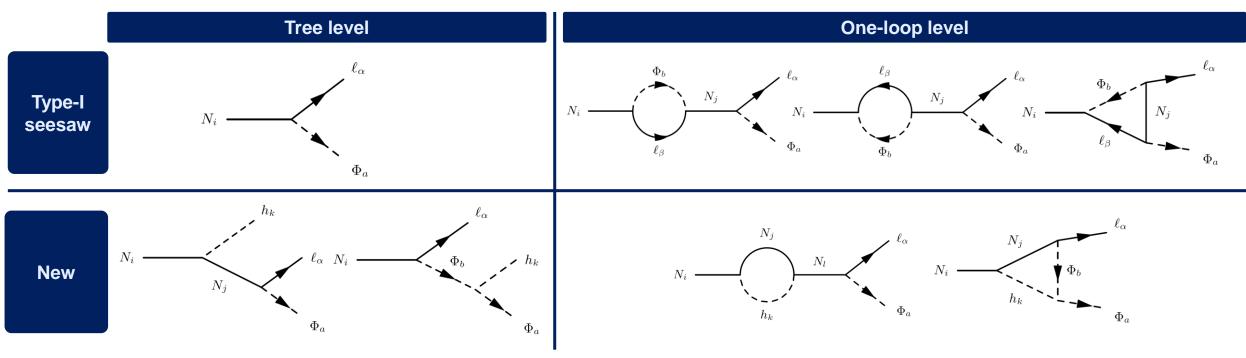
Débora Barreiros - FLASY 22 - June 28, 2022

$$\begin{array}{ll} \mbox{Flavoured CP asymmetry:} & \varepsilon^a_{i\alpha} = \frac{\Gamma(N_i \to \Phi_a \ell_\alpha) - \Gamma(N_i \to \Phi_a^\dagger \overline{\ell}_\alpha)}{\sum_\beta \sum_b \left[\Gamma(N_i \to \Phi_b \ell_\beta) + \Gamma(N_i \to \Phi_b^\dagger \overline{\ell}_\beta) \right]} & \mbox{with} & \begin{array}{ll} i = 1, \cdots, n_R \\ \alpha, \beta = e, \mu, \tau \\ a, b = 1, \cdots, n_H \end{array} \end{array}$$

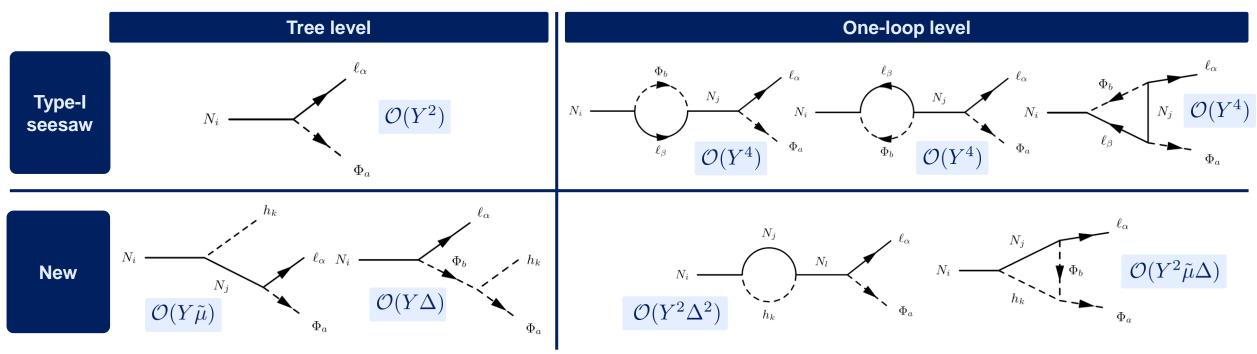
Flavoured CP asymmetry:
$$\varepsilon_{i\alpha}^{a} = \frac{\Gamma(N_{i} \to \Phi_{a}\ell_{\alpha}) - \Gamma(N_{i} \to \Phi_{a}^{\dagger}\overline{\ell}_{\alpha})}{\sum_{\beta}\sum_{b} \left[\Gamma(N_{i} \to \Phi_{b}\ell_{\beta}) + \Gamma(N_{i} \to \Phi_{b}^{\dagger}\overline{\ell}_{\beta})\right]} \quad \text{with} \quad \begin{array}{c} i = 1, \cdots, n_{R} \\ \alpha, \beta = e, \mu, \tau \\ a, b = 1, \cdots, n_{H} \end{array}$$



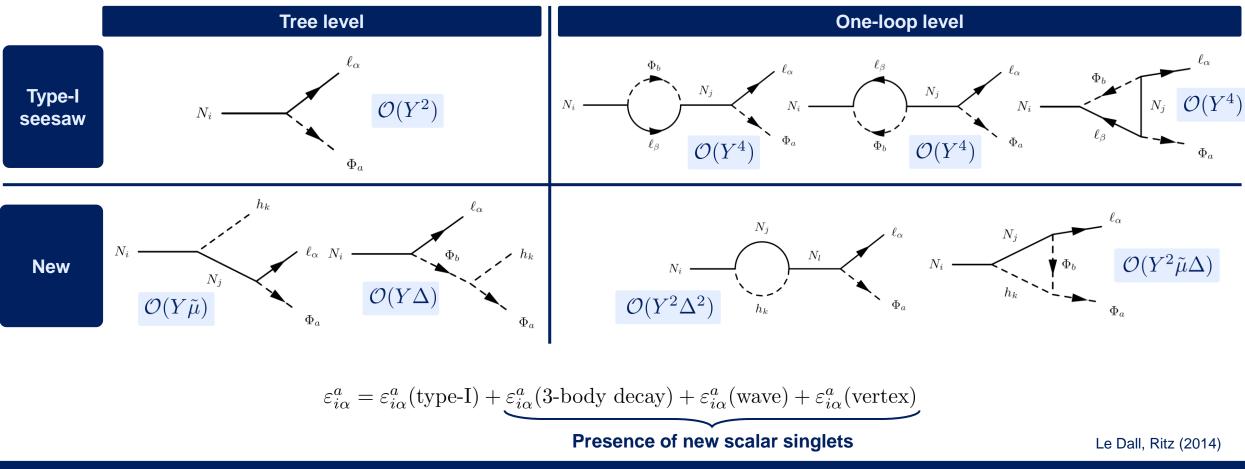
$$\begin{array}{ll} \textbf{Flavoured CP asymmetry:} \quad \varepsilon^a_{i\alpha} = \frac{\Gamma(N_i \to \Phi_a \ell_\alpha) - \Gamma(N_i \to \Phi_a^{\dagger} \overline{\ell}_\alpha)}{\sum_{\beta} \sum_b \left[\Gamma(N_i \to \Phi_b \ell_\beta) + \Gamma(N_i \to \Phi_b^{\dagger} \overline{\ell}_\beta) \right]} & \text{with} & \begin{array}{ll} i = 1, \cdots, n_R \\ \alpha, \beta = e, \mu, \tau \\ a, b = 1, \cdots, n_H \end{array} \end{array}$$



$$\begin{array}{ll} \textbf{Flavoured CP asymmetry:} \quad \varepsilon^a_{i\alpha} = \frac{\Gamma(N_i \to \Phi_a \ell_\alpha) - \Gamma(N_i \to \Phi_a^{\dagger} \overline{\ell}_\alpha)}{\sum_{\beta} \sum_b \left[\Gamma(N_i \to \Phi_b \ell_\beta) + \Gamma(N_i \to \Phi_b^{\dagger} \overline{\ell}_\beta) \right]} & \text{with} & \begin{array}{ll} i = 1, \cdots, n_R \\ \alpha, \beta = e, \mu, \tau \\ a, b = 1, \cdots, n_H \end{array} \end{array}$$



$$\begin{array}{ll} \text{Flavoured CP asymmetry:} \quad \varepsilon_{i\alpha}^{a} = \frac{\Gamma(N_{i} \to \Phi_{a}\ell_{\alpha}) - \Gamma(N_{i} \to \Phi_{a}^{\dagger}\overline{\ell}_{\alpha})}{\sum_{\beta}\sum_{b}\left[\Gamma(N_{i} \to \Phi_{b}\ell_{\beta}) + \Gamma(N_{i} \to \Phi_{b}^{\dagger}\overline{\ell}_{\beta})\right]} & \text{with} & \begin{array}{ll} i = 1, \cdots, n_{R} \\ \alpha, \beta = e, \mu, \tau \\ a, b = 1, \cdots, n_{R} \end{array} \end{array}$$



Considering $n_R = 2$ and $M_2 > M_1$:

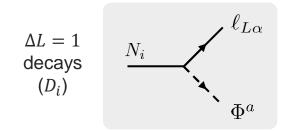
~ ~

$$\frac{dN_{N_1}}{dz} = -(D_1 + \frac{N_{N_2}^{\text{eq}}}{N_{N_1}^{\text{eq}}} D_{21} + S_1)(N_{N_1} - N_{N_1}^{\text{eq}}) + D_{21}(N_{N_2} - N_{N_2}^{\text{eq}}) - S_{11}[(N_{N_1})^2 - (N_{N_1}^{\text{eq}})^2] - S_{12}(N_{N_1}N_{N_2} - N_{N_1}^{\text{eq}}N_{N_2}^{\text{eq}})$$
$$\frac{dN_{N_2}}{dz} = -(D_2 + D_{21} + S_2)(N_{N_2} - N_{N_2}^{\text{eq}}) + \frac{N_{N_2}^{\text{eq}}}{N_{N_1}^{\text{eq}}} D_{21}(N_{N_1} - N_{N_1}^{\text{eq}}) - S_{22}[(N_{N_2})^2 - (N_{N_2}^{\text{eq}})^2] - S_{12}(N_{N_1}N_{N_2} - N_{N_1}^{\text{eq}}N_{N_2}^{\text{eq}})$$
$$\frac{dN_{B-L}}{dz} = -\sum_{i=1}^2 \epsilon_i D_i(N_{N_i} - N_{N_i}^{\text{eq}}) - WN_{B-L}$$

Considering $n_R = 2$ and $M_2 > M_1$:

~ ~

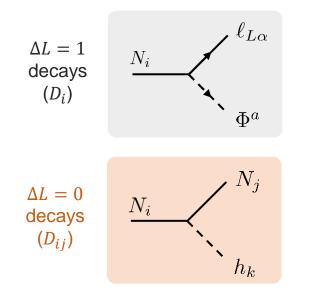
$$\frac{dN_{N_1}}{dz} = -(D_1 + \frac{N_{N_2}^{\text{eq}}}{N_{N_1}^{\text{eq}}} D_{21} + S_1)(N_{N_1} - N_{N_1}^{\text{eq}}) + D_{21}(N_{N_2} - N_{N_2}^{\text{eq}}) - S_{11}[(N_{N_1})^2 - (N_{N_1}^{\text{eq}})^2] - S_{12}(N_{N_1}N_{N_2} - N_{N_1}^{\text{eq}}N_{N_2}^{\text{eq}})$$
$$\frac{dN_{N_2}}{dz} = -(D_2 + D_{21} + S_2)(N_{N_2} - N_{N_2}^{\text{eq}}) + \frac{N_{N_2}^{\text{eq}}}{N_{N_1}^{\text{eq}}} D_{21}(N_{N_1} - N_{N_1}^{\text{eq}}) - S_{22}[(N_{N_2})^2 - (N_{N_2}^{\text{eq}})^2] - S_{12}(N_{N_1}N_{N_2} - N_{N_1}^{\text{eq}}N_{N_2}^{\text{eq}})$$
$$\frac{dN_{B-L}}{dz} = -\sum_{i=1}^{2} \epsilon_i D_i(N_{N_i} - N_{N_i}^{\text{eq}}) - WN_{B-L}$$



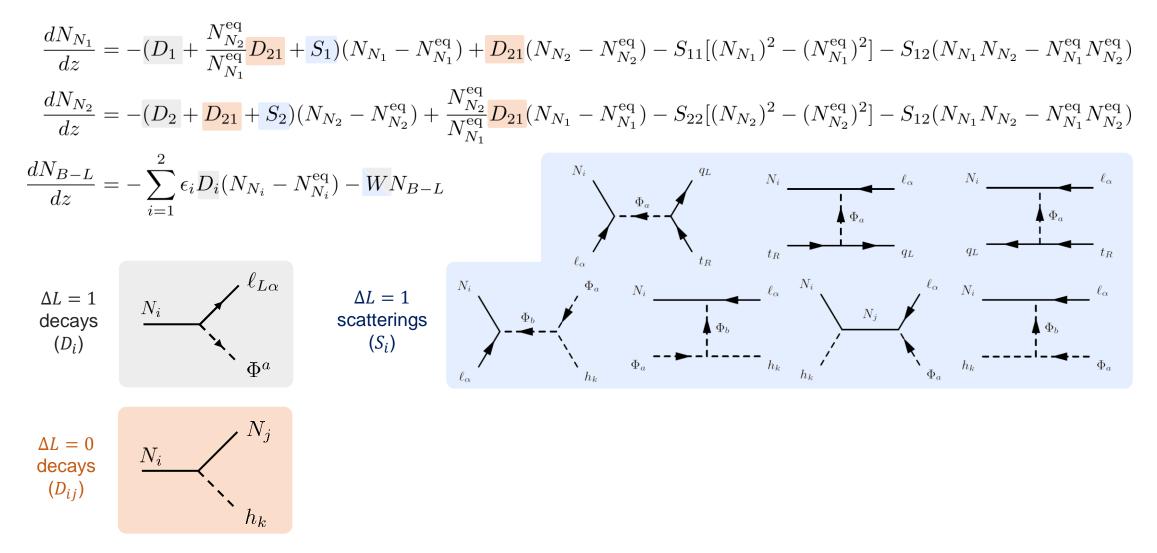
i=1

Considering $n_R = 2$ and $M_2 > M_1$:

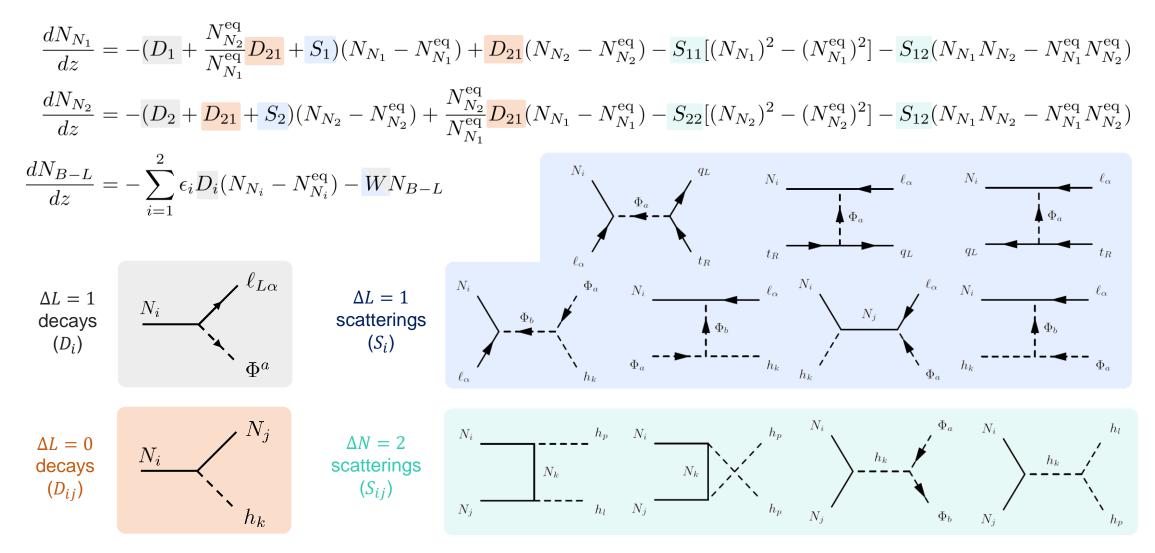
$$\frac{dN_{N_1}}{dz} = -(D_1 + \frac{N_{N_2}^{\text{eq}}}{N_{N_1}^{\text{eq}}} D_{21} + S_1)(N_{N_1} - N_{N_1}^{\text{eq}}) + D_{21}(N_{N_2} - N_{N_2}^{\text{eq}}) - S_{11}[(N_{N_1})^2 - (N_{N_1}^{\text{eq}})^2] - S_{12}(N_{N_1}N_{N_2} - N_{N_1}^{\text{eq}}N_{N_2}^{\text{eq}})$$
$$\frac{dN_{N_2}}{dz} = -(D_2 + D_{21} + S_2)(N_{N_2} - N_{N_2}^{\text{eq}}) + \frac{N_{N_2}^{\text{eq}}}{N_{N_1}^{\text{eq}}} D_{21}(N_{N_1} - N_{N_1}^{\text{eq}}) - S_{22}[(N_{N_2})^2 - (N_{N_2}^{\text{eq}})^2] - S_{12}(N_{N_1}N_{N_2} - N_{N_1}^{\text{eq}}N_{N_2}^{\text{eq}})$$
$$\frac{dN_{B-L}}{dz} = -\sum_{i=1}^2 \epsilon_i D_i(N_{N_i} - N_{N_i}^{\text{eq}}) - WN_{B-L}$$



Considering $n_R = 2$ and $M_2 > M_1$:



Considering $n_R = 2$ and $M_2 > M_1$:



Extending the SM with 2 RH neutrinos, 1 scalar doublet and 1 scalar singlet along with a discrete flavour symmetry to minimize the number of free parameters

	Fields	$\mathrm{SU}(2)_L \otimes \mathrm{U}(1)_Y$	\mathcal{Z}_8^e	\mathcal{Z}_8^μ	$\mathcal{Z}_8^{ au}$	
	ℓ_{eL}	(2, -1/2)	ω^5	ω^7	ω^6	
	$\ell_{\mu L}$	(2 , -1/2)	ω^7	ω^5	ω^5	
	$\ell_{\tau L}$	(2 , -1/2)	ω^6	ω^6	ω^7	
Fermions	e_R	(1 ,-1)	ω^4	ω^7	ω^6	
ermi	μ_R	(1 ,-1)	ω^7	ω^4	ω^4	
ЦЦ	$ au_R$	(1 ,-1)	ω^6	ω^6	ω^7	
	$ u_{R_1}$	(1 ,0)	ω^6	ω^6	ω^6	
	$ u_{R_2}$	(1 ,0)	1	1	1	
rs	Φ_1	(2, 1/2)	1			
Scalars	Φ_2	(2 , 1/2)	ω			
Ň	S	(1 ,0)	ω^2			
$\langle \downarrow 0 \rangle = v_1 \langle \downarrow 0 \rangle = v_2 \langle C \rangle = u e^{i\theta}$						

$$\langle \phi_1^0 \rangle = \frac{v_1}{\sqrt{2}} , \ \langle \phi_2^0 \rangle = \frac{v_2}{\sqrt{2}} , \ \langle S \rangle = \frac{ue^{v_1}}{\sqrt{2}}$$

Extending the SM with **2 RH neutrinos**, **1 scalar doublet** and **1 scalar singlet** along with a discrete flavour symmetry to **minimize the number of free parameters**

	Fields	$\mathrm{SU}(2)_L \otimes \mathrm{U}(1)_Y$	\mathcal{Z}_8^e	\mathcal{Z}_8^μ	$\mathcal{Z}_8^{ au}$		
	ℓ_{eL}	(2, -1/2)	ω^5	ω^7	ω^6		
	$\ell_{\mu L}$	(2 , -1/2)	ω^7	ω^5	ω^5		
	$\ell_{\tau L}$	(2 , -1/2)	ω^6	ω^6	ω^7		
Fermions	e_R	(1 ,-1)	ω^4	ω^7	ω^6		
ermi	μ_R	(1 ,-1)	ω^7	ω^4	ω^4		
Ε ^Ψ	$ au_R$	(1 ,-1)	ω^6	ω^6	ω^7		
	$ u_{R_1}$	(1 ,0)	ω^6	ω^6	ω^6		
	$ u_{R_2}$	(1 ,0)	1	1	1		
IS	Φ_1	(2, 1/2)	1				
Scalars	Φ_2	(2, 1/2)	ω				
Ň	S	(1 ,0)	ω^2				
$i\theta$							

$$\langle \phi_1^0 \rangle = \frac{v_1}{\sqrt{2}} , \ \langle \phi_2^0 \rangle = \frac{v_2}{\sqrt{2}} , \ \langle S \rangle = \frac{u e^{i\theta}}{\sqrt{2}}$$

 $-\mathcal{L}_{\text{Yuk.}} = \overline{\ell}_L \mathbf{Y}^a_{\ell} \Phi_a e_R + \overline{\ell}_L \mathbf{Y}^{a*}_D \widetilde{\Phi}_a \nu_R + \frac{1}{2} \overline{\nu_R} \left(\mathbf{M}^0_R + \mathbf{Y}^k_R S_k + \mathbf{Y}'^k_R S_k^* \right) \nu^c_R + \text{H.c.}$

Extending the SM with **2 RH neutrinos**, **1 scalar doublet** and **1 scalar singlet** along with a discrete flavour symmetry to **minimize the number of free parameters**

	Fields	$\mathrm{SU}(2)_L \otimes \mathrm{U}(1)_Y$	\mathcal{Z}_8^e	\mathcal{Z}_8^μ	$\mathcal{Z}_8^{ au}$
	ℓ_{eL}	(2, -1/2)	ω^5	ω^7	ω^6
	$\ell_{\mu L}$	$({f 2},-1/2)$	ω^7	ω^5	ω^5
	$\ell_{\tau L}$	(2 , -1/2)	ω^6	ω^6	ω^7
Fermions	e_R	(1, -1)	ω^4	ω^7	ω^6
ermi	μ_R	(1, -1)	ω^7	ω^4	ω^4
Ĕ	$ au_R$	(1, -1)	ω^6	ω^6	ω^7
	$ u_{R_1}$	(1, 0)	ω^6	ω^6	ω^6
	$ u_{R_2}$	(1, 0)	1	1	1
rs	Φ_1	(2, 1/2)			
Scalars	Φ_2	(2, 1/2)	ω		
Š	S	(1 ,0)	ω^2		
	iA				

$$\langle \phi_1^0 \rangle = \frac{v_1}{\sqrt{2}} , \ \langle \phi_2^0 \rangle = \frac{v_2}{\sqrt{2}} , \ \langle S \rangle = \frac{u e^{i\theta}}{\sqrt{2}}$$

$$\begin{aligned} -\mathcal{L}_{\mathrm{Yuk.}} &= \bar{\ell}_{L} \mathbf{Y}_{\ell}^{a} \Phi_{a} e_{R} + \bar{\ell}_{L} \mathbf{Y}_{D}^{a*} \tilde{\Phi}_{a} \nu_{R} + \frac{1}{2} \overline{\nu_{R}} \left(\mathbf{M}_{R}^{0} + \mathbf{Y}_{R}^{k} S_{k} + \mathbf{Y}_{R}^{\prime k} S_{k}^{*} \right) \nu_{R}^{c} + \mathrm{H.c.} \\ & \mathbf{V}_{\ell}^{1} = \begin{pmatrix} y_{1} & 0 & 0 \\ 0 & y_{3} & 0 \\ 0 & 0 & 0 \end{pmatrix}, \ \mathbf{Y}_{\ell}^{2} = \begin{pmatrix} 0 & y_{2} & 0 \\ 0 & 0 & 0 \\ 0 & 0 & y_{4} \end{pmatrix}, \ \mathbf{Y}_{D}^{1} = \begin{pmatrix} 0 & 0 \\ y_{D_{2}} & 0 \\ 0 & 0 \end{pmatrix}, \ \mathbf{Y}_{D}^{2} = \begin{pmatrix} 0 & y_{D_{1}} \\ 0 & 0 \\ y_{D_{3}} & 0 \end{pmatrix}, \\ & \mathbf{M}_{R}^{0} = \begin{pmatrix} 0 & 0 \\ . & m_{R} \end{pmatrix}, \ \mathbf{Y}_{R}^{\prime} = \begin{pmatrix} 0 & y_{R_{S}} \\ . & 0 \end{pmatrix}, \ \mathbf{Y}_{R} = \begin{pmatrix} 0 & 0 \\ . & 0 \end{pmatrix}, \end{aligned}$$

Extending the SM with **2 RH neutrinos**, **1 scalar doublet** and **1 scalar singlet** along with a discrete flavour symmetry to **minimize the number of free parameters**

	Fields	$\mathrm{SU}(2)_L \otimes \mathrm{U}(1)_Y$	\mathcal{Z}_8^e	\mathcal{Z}_8^μ	$\mathcal{Z}_8^{ au}$	
	ℓ_{eL}	(2, -1/2)	ω^5	ω^7	ω^6	
	$\ell_{\mu L}$	(2 ,-1/2)	ω^7	ω^5	ω^5	
	$\ell_{\tau L}$	(2 , -1/2)	ω^6	ω^6	ω^7	
Fermions	e_R	(1 ,-1)	ω^4	ω^7	ω^6	
ermi	μ_R	(1 ,-1)	ω^7	ω^4	ω^4	
F.	$ au_R$	(1 ,-1)	ω^6	ω^6	ω^7	
	$ u_{R_1}$	(1 ,0)	ω^6	ω^6	ω^6	
	$ u_{R_2}$	(1, 0)	1	1	1	
IS	Φ_1	(2 , 1/2)	1			
Scalars	Φ_2	(2, 1/2)	ω			
Ň	S	(1 ,0)	ω^2			
$\langle \phi_1^0 \rangle = \frac{v_1}{\sqrt{2}} \ , \ \langle \phi_2^0 \rangle = \frac{v_2}{\sqrt{2}} \ , \ \langle S \rangle = \frac{u e^{i\theta}}{\sqrt{2}}$						

At the effective level (charged-lepton mass basis):

$$\mathbf{M}_{\nu} = \begin{pmatrix} -e^{-i\theta}y\sqrt{\frac{z}{x}}\sin(2\theta_{L}) + zs_{L}^{2} & e^{-i\theta}y\sqrt{\frac{z}{x}}\cos(2\theta_{L}) - \frac{z}{2}\sin(2\theta_{L}) & e^{-i\theta}yc_{L} - \sqrt{xz}s_{L} \\ \vdots & e^{-i\theta}y\sqrt{\frac{z}{x}}\sin(2\theta_{L}) + zc_{L}^{2} & e^{-i\theta}ys_{L} + \sqrt{xz}c_{L} \\ \vdots & \vdots & x \end{pmatrix}$$

$$x = \frac{v_2^2}{u^2} \frac{m_R y_{D_3}^2}{y_{R_S}^2}, \ y = \frac{v_2^2}{\sqrt{2}u} \frac{y_{D_1} y_{D_3}}{y_{R_S}},$$
$$z = \frac{v_1^2}{u^2} \frac{m_R y_{D_2}^2}{y_{R_S}^2}$$

Extending the SM with **2 RH neutrinos**, **1 scalar doublet** and **1 scalar singlet** along with a discrete flavour symmetry to **minimize the number of free parameters**

	Fields	${\rm SU}(2)_L \otimes {\rm U}(1)_Y$	\mathcal{Z}^e_8	\mathcal{Z}_8^μ	$\mathcal{Z}_8^{ au}$
	ℓ_{eL}	(2, -1/2)	ω^5	ω^7	ω^6
	$\ell_{\mu L}$	(2 , -1/2)	ω^7	ω^5	ω^5
	$\ell_{\tau L}$	(2 , -1/2)	ω^6	ω^6	ω^7
Fermions	e_R	(1 ,-1)	ω^4	ω^7	ω^6
ermi	μ_R	(1 ,-1)	ω^7	ω^4	ω^4
Τe	$ au_R$	(1 ,-1)	ω^6	ω^6	ω^7
	$ u_{R_1}$	(1 ,0)	ω^6	ω^6	ω^6
	$ u_{R_2}$	(1, 0)	1	1	1
ſS	Φ_1	(2, 1/2)	1		
Scalars	Φ_2	$({f 2},1/2)$	ω		
Ň	S	(1, 0)	ω^2		
$\langle \phi_1^0 \rangle = \frac{v_1}{\sqrt{2}} \ , \ \langle \phi_2^0 \rangle = \frac{v_2}{\sqrt{2}} \ , \ \langle S \rangle = \frac{u e^{i\theta}}{\sqrt{2}}$					

$\int -\mathcal{L}_{ ext{Yuk}}$	$ = \overline{\ell}_L \mathbf{Y}^a_\ell \Phi_a e_R + \overline{\ell}_L \mathbf{Y}^{a*}_D \widetilde{\Phi}_a \nu_R + \frac{1}{2} \overline{\nu_R} \left(\mathbf{M}^0_R + \mathbf{Y}^k_R S_k + \mathbf{Y}'^k_R S_k^* \right) \nu^c_R + \text{H.c.} $
	$\mathbf{I} \mathcal{Z}_8^{\tau}$
$\mathbf{Y}_{\ell}^1 = \begin{pmatrix} y_1 \\ 0 \\ 0 \end{pmatrix}$	$ \begin{pmatrix} 0 & 0 \\ y_3 & 0 \\ 0 & 0 \end{pmatrix}, \ \mathbf{Y}_{\ell}^2 = \begin{pmatrix} 0 & y_2 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & y_4 \end{pmatrix}, \ \mathbf{Y}_{D}^1 = \begin{pmatrix} 0 & 0 \\ y_{D_2} & 0 \\ 0 & 0 \end{pmatrix}, \ \mathbf{Y}_{D}^2 = \begin{pmatrix} 0 & y_{D_1} \\ 0 & 0 \\ y_{D_3} & 0 \end{pmatrix}, $
	$\mathbf{M}_{R}^{0} = \begin{pmatrix} 0 & 0 \\ \cdot & m_{R} \end{pmatrix}, \ \mathbf{Y}_{R}' = \begin{pmatrix} 0 & y_{R_{S}} \\ \cdot & 0 \end{pmatrix}, \ \mathbf{Y}_{R} = \begin{pmatrix} 0 & 0 \\ \cdot & 0 \end{pmatrix}$

At the effective level (charged-lepton mass basis):

$$= \begin{pmatrix} -e^{-i\theta}y\sqrt{\frac{z}{x}}\sin(2\theta_L) + zs_L^2 & e^{-i\theta}y\sqrt{\frac{z}{x}}\cos(2\theta_L) - \frac{z}{2}\sin(2\theta_L) & e^{-i\theta}yc_L - \sqrt{xz}s_L \\ \vdots & e^{-i\theta}y\sqrt{\frac{z}{x}}\sin(2\theta_L) + zc_L^2 & e^{-i\theta}ys_L + \sqrt{xz}c_L \\ \vdots & \vdots & x \end{pmatrix}$$

Branco et al. (1999, 2003)

- CP is **spontaneously broken** by the complex VEV of *S* and is **successfully transmitted to the leptonic sector**
- A minimal scalar potential which allows to implement SCPV must contain a **phase sensitive** term of the type $S^4 + H.c.$

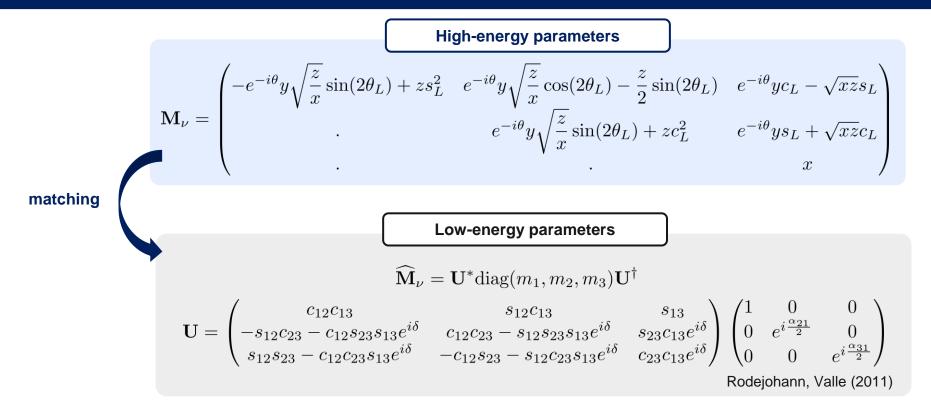
 $\mathbf{M}_{
u}$

- New Z₈ discrete symmetry leads to **low-energy constrains** for neutrino masses and lepton mixing
- Phase θ is source of CPV at low-energies and leads to non-zero CP asymmetries in the early Universe

 $z = \frac{v_1^2}{u^2} \frac{m_R y_{D_2}^2}{v_D^2}$

 $x = \frac{v_2^2}{u^2} \frac{m_R y_{D_3}^2}{y_{R_S}^2}, \ y = \frac{v_2^2}{\sqrt{2}u} \frac{y_{D_1} y_{D_3}}{y_{R_S}},$

Neutrino sector predictions



Using the global fit of neutrino oscillation data: Salas et al. (2021)

Case	θ/π	$ heta_L/\pi$	(x,y,z)	θ_{23} (°)	δ/π	α/π	$m_{\beta\beta} \ ({\rm meV})$	$m_{\beta} \ ({\rm meV})$	$\sum_i m_i \; (\text{meV})$
\mathcal{Z}_8^{μ} (IO)	0.11	7.29×10^{-2}	(0.325, 32.8, 0.426)	49.62	1.88	0.92	16.6	49.2	99.7
\mathcal{Z}_8^{τ} (IO)	1.92	6.36×10^{-2}	(0.431, 37.8, 0.321)	48.64	1.08	1.04	12.6	49.2	55.1

- Only cases Z_8^{μ} and Z_8^{τ} are compatible with neutrino oscillation data at the 3σ level and only for inverted ordering (IO)
- SCPV phase θ is fixed by low-energy parameters due to the constraints imposed by the underlying Z_8 symmetry

Reconstructed Yukawa couplings (in the charged-lepton and heavy-neutrino mass basis for case Z_8^{τ}):

Reconstructed Yukawa couplings (in the charged-lepton and heavy-neutrino mass basis for case Z_8^{τ}):

econstructed Yukawa couplings (in the charged-lepton and heavy-neutrino mass basis for case
$$Z_8^{\tau}$$
):

$$r_{12} = \frac{M_1}{M_2}$$

$$\frac{N_i}{\sqrt{1-v_{12}}} \begin{pmatrix} \ell_{L\alpha} \\ V_1 \end{pmatrix} = \frac{\sqrt{z\sqrt{M_1}}}{v_1} \frac{\sqrt{2}}{\sqrt{1-r_{12}}} \begin{pmatrix} -s_L e^{i\theta} & -\sqrt[4]{r_{12}} s_L e^{i\theta} \\ c_L e^{i\theta} & \sqrt[4]{r_{12}} c_L e^{i\theta} \\ 0 & 0 \end{pmatrix}, \quad \mathbf{Y}^2 = \frac{\sqrt{x\sqrt{M_1}}}{v_2} \frac{\sqrt{2}}{\sqrt{1-r_{12}}} \begin{pmatrix} \frac{y}{x} \left(1-\sqrt{r_{12}}\right) c_L & -\frac{y}{x} \left(1-\sqrt{r_{12}}\right) c_L \\ \frac{y}{x} \left(1-\sqrt{r_{12}}\right) s_L & -\frac{y}{x} \left(1-\sqrt{r_{12}}\right) s_L \\ e^{i\theta} & \sqrt[4]{r_{12}} e^{i\theta} \end{pmatrix}$$

$$\underbrace{\frac{N_{i}}{\sum_{k=1}^{N_{i}}}_{h_{k}} \Delta^{1} = \frac{M_{2}}{u} \frac{\sqrt[4]{r_{12}}}{1 + \sqrt{r_{12}}} \begin{pmatrix} -2\sqrt[4]{r_{12}} & 1 - \sqrt{r_{12}} \\ \cdot & 2\sqrt[4]{r_{12}} \end{pmatrix} e^{-i(\theta_{S} - \theta)}, \quad \Delta^{2} = -i\Delta^{1}$$

Reconstructed Yukawa couplings (in the charged-lepton and heavy-neutrino mass basis for case Z_8^{τ}):

$$\begin{split} & \underbrace{N_{i}}_{Q_{i}} \underbrace{\ell_{L\alpha}}_{Q_{i}} & \mathbf{Y}^{1} = \frac{\sqrt{z}\sqrt{M_{1}}}{v_{1}} \frac{\sqrt{2}}{\sqrt{1-r_{12}}} \begin{pmatrix} -s_{L}e^{i\theta} & -\sqrt[4]{r_{12}}s_{L}e^{i\theta} \\ c_{L}e^{i\theta} & \sqrt[4]{r_{12}}c_{L}e^{i\theta} \\ 0 & 0 \end{pmatrix}, \\ \mathbf{Y}^{2} = \frac{\sqrt{x}\sqrt{M_{1}}}{v_{2}} \frac{\sqrt{2}}{\sqrt{1-r_{12}}} \begin{pmatrix} \frac{y}{x} \left(1 - \sqrt{r_{12}}\right)c_{L} & -\frac{y}{x} \left(1 - \sqrt{r_{12}}\right)c_{L} \\ \frac{y}{x} \left(1 - \sqrt{r_{12}}\right)s_{L} & -\frac{y}{x} \left(1 - \sqrt{r_{12}}\right)s_{L} \\ e^{i\theta} & \sqrt[4]{r_{12}}e^{i\theta} \end{pmatrix} \\ \underbrace{N_{i}}_{h_{k}} & \Delta^{1} = \frac{M_{2}}{u} \frac{\sqrt[4]{r_{12}}}{1 + \sqrt{r_{12}}} \begin{pmatrix} -2\sqrt[4]{r_{12}} & 1 - \sqrt{r_{12}} \\ 2\sqrt[4]{r_{12}} & 2\sqrt[4]{r_{12}} \end{pmatrix} e^{-i(\theta_{S} - \theta)}, \\ & \Delta^{2} = -i\Delta^{1} \end{split}$$

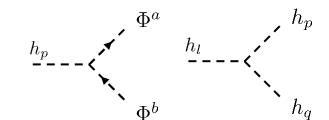
Débora Barreiros – FLASY 22 – June 28, 2022

Reconstructed Yukawa couplings (in the charged-lepton and heavy-neutrino mass basis for case Z_8^{τ}):

$$\underbrace{N_{i}}_{\Phi^{a}} \qquad \mathbf{Y}^{1} = \frac{\sqrt{z}\sqrt{M_{1}}}{v_{1}} \frac{\sqrt{2}}{\sqrt{1 - r_{12}}} \begin{pmatrix} -s_{L}e^{i\theta} & -\sqrt[4]{r_{12}}s_{L}e^{i\theta} \\ c_{L}e^{i\theta} & \sqrt[4]{r_{12}}c_{L}e^{i\theta} \\ 0 & 0 \end{pmatrix}, \mathbf{Y}^{2} = \frac{\sqrt{x}\sqrt{M_{1}}}{v_{2}} \frac{\sqrt{2}}{\sqrt{1 - r_{12}}} \begin{pmatrix} \frac{y}{x}\left(1 - \sqrt{r_{12}}\right)c_{L} & -\frac{y}{x}\left(1 - \sqrt{r_{12}}\right)c_{L} \\ \frac{y}{x}\left(1 - \sqrt{r_{12}}\right)s_{L} & -\frac{y}{x}\left(1 - \sqrt{r_{12}}\right)s_{L} \\ e^{i\theta} & \sqrt[4]{r_{12}}e^{i\theta} \end{pmatrix}$$

Usual type-I seesaw diagrams do not contribute to $\varepsilon_{CP}!$

 $\underbrace{\frac{N_{i}}{1 + \sqrt{r_{12}}}}_{h_{k}} \Delta^{1} = \frac{M_{2}}{u} \frac{\sqrt[4]{r_{12}}}{1 + \sqrt{r_{12}}} \begin{pmatrix} -2\sqrt[4]{r_{12}} & 1 - \sqrt{r_{12}} \\ \cdot & 2\sqrt[4]{r_{12}} \end{pmatrix} e^{-i(\theta_{S} - \theta)}, \quad \Delta^{2} = -i\Delta^{1}$ h_k + Z_8 symmetry forbids cubic couplings and thus, $\tilde{\mu}_{ab,k} = 0$ and $\tilde{\mu}_{lpq} = 0$



Reconstructed Yukawa couplings (in the charged-lepton and heavy-neutrino mass basis for case Z_8^{τ}):

econstructed Yukawa couplings (in the charged-lepton and heavy-neutrino mass basis for case
$$Z_{6}^{4}$$
):

$$r_{12} = \frac{M_{1}}{M_{2}}$$

$$r_{12} = \frac{M_{1}}{M_{2}}$$

$$P_{1} = \frac{\sqrt{z}\sqrt{M_{1}}}{v_{1}} \frac{\sqrt{2}}{\sqrt{1 - r_{12}}} \begin{pmatrix} -s_{L}e^{i\theta} & -\sqrt{r_{12}}s_{L}e^{i\theta} \\ c_{L}e^{i\theta} & \sqrt[4]{r_{12}}c_{L}e^{i\theta} \\ 0 & 0 \end{pmatrix}, \mathbf{Y}^{2} = \frac{\sqrt{x}\sqrt{M_{1}}}{v_{2}} \frac{\sqrt{2}}{\sqrt{1 - r_{12}}} \begin{pmatrix} \frac{y}{x} \left(1 - \sqrt{r_{12}}\right)c_{L} & -\frac{y}{x} \left(1 - \sqrt{r_{12}}\right)c_{L} \\ \frac{y}{x} \left(1 - \sqrt{r_{12}}\right)s_{L} & -\frac{y}{x} \left(1 - \sqrt{r_{12}}\right)s_{L} \\ e^{i\theta} & \frac{\sqrt{r_{12}}e^{i\theta}}{\sqrt{r_{12}}e^{i\theta}} \end{pmatrix}$$

$$N_{i} \qquad N_{i} \qquad N_{i} \qquad A^{1} = \frac{M_{2}}{u} \frac{\sqrt[4]{r_{12}}}{1 + \sqrt{r_{12}}} \begin{pmatrix} -2\sqrt[4]{r_{12}} & 1 - \sqrt{r_{12}} \\ 2\sqrt[4]{r_{12}} & 2\sqrt[4]{r_{12}} \end{pmatrix} e^{-i(\theta_{S} - \theta)}, \quad \Delta^{2} = -i\Delta^{1}$$

$$N_{k} \qquad A^{1} = \frac{M_{2}}{u} \frac{\sqrt[4]{r_{12}}}{1 + \sqrt{r_{12}}} \begin{pmatrix} -2\sqrt[4]{r_{12}} & 1 - \sqrt{r_{12}} \\ 2\sqrt[4]{r_{12}} & 2\sqrt[4]{r_{12}} \end{pmatrix} e^{-i(\theta_{S} - \theta)}, \quad \Delta^{2} = -i\Delta^{1}$$

$$N_{k} \qquad A^{1} = \frac{M_{2}}{u} \frac{\sqrt[4]{r_{12}}}{1 + \sqrt{r_{12}}} \begin{pmatrix} -2\sqrt[4]{r_{12}} & 1 - \sqrt{r_{12}} \\ 2\sqrt[4]{r_{12}} & 2\sqrt[4]{r_{12}} \end{pmatrix} e^{-i(\theta_{S} - \theta)}, \quad \Delta^{2} = -i\Delta^{1}$$

$$N_{k} \qquad N_{k} \qquad N_$$

Reconstructed Yukawa couplings (in the charged-lepton and heavy-neutrino mass basis for case Z_8^{τ}):

 N_2 M_1 N_2 N_1 N_1 ℓ_{α} N_1 ℓ_{α} $h_{1,2}$ $h_$

 $r_{12} =$

Reconstructed Yukawa couplings (in the charged-lepton and heavy-neutrino mass basis for case Z_8^{τ}):

 \bullet $\Phi_{1,2}$

Reconstructed Yukawa couplings (in the charged-lepton and heavy-neutrino mass basis for case
$$Z_{b}^{i}$$
:

$$r_{12} = \frac{M_{1}}{M_{2}}$$

$$r_{1} = \frac{\sqrt{z}\sqrt{M_{1}}}{\sqrt{1 - r_{12}}} \left(\sum_{i=1}^{-s_{L}e^{i\theta}} - \sqrt[4]{r_{12}s_{L}e^{i\theta}}}{0} \right), \quad \mathbf{Y}^{2} = \frac{\sqrt{x}\sqrt{M_{1}}}{v_{2}} \frac{\sqrt{2}}{\sqrt{1 - r_{12}}} \left(\frac{\frac{y}{x} \left(1 - \sqrt{r_{12}}\right)c_{L}}{y} - \frac{y}{x} \left(1 - \sqrt{r_{12}}\right)c_{L}}{\sqrt{r_{12}}e^{i\theta}} \right)$$

$$r_{1} = \frac{M_{1}}{M_{2}}$$

$$\frac{M_{1}}{\sqrt{r_{12}e^{i\theta}}} = \frac{M_{1}}{\sqrt{r_{12}}} \left(\sum_{i=1}^{-s_{L}e^{i\theta}} - \sqrt[4]{r_{12}} c_{L}e^{i\theta}} \right), \quad \mathbf{Y}^{2} = \frac{\sqrt{x}\sqrt{M_{1}}}{v_{2}} \frac{\sqrt{2}}{\sqrt{1 - r_{12}}} \left(\frac{\frac{y}{x} \left(1 - \sqrt{r_{12}}\right)c_{L}}{\sqrt{r_{12}}s_{L}} - \frac{y}{x} \left(1 - \sqrt{r_{12}}\right)s_{L}}{\sqrt{r_{12}e^{i\theta}}} \right)$$

$$\frac{M_{1}}{\sqrt{r_{12}e^{i\theta}}} = \frac{M_{2}}{\sqrt{r_{12}}} \frac{\sqrt{r_{12}}}{1 + \sqrt{r_{12}}} \left(\sum_{i=1}^{-2\sqrt{r_{12}}} \frac{1 - \sqrt{r_{12}}}{2\sqrt{r_{12}}} \right) e^{-i(\theta_{S} - \theta)}, \quad \Delta^{2} = -i\Delta^{1}$$

$$\frac{M_{1}}{\sqrt{r_{12}}} = \frac{M_{2}}{\sqrt{r_{12}}} \frac{\sqrt{r_{12}}}{1 + \sqrt{r_{12}}} \left(\sum_{i=1}^{-2\sqrt{r_{12}}} \frac{1 - \sqrt{r_{12}}}{\sqrt{r_{12}}} - \frac{\Phi^{i}}{2\sqrt{r_{12}}r_{12}} \right) e^{-i(\theta_{S} - \theta)}, \quad \Delta^{2} = -i\Delta^{1}$$

$$\frac{M_{1}}{\sqrt{r_{12}}} = \frac{M_{2}}{\sqrt{r_{12}}} \frac{M_{1}}{\sqrt{r_{12}}} \frac{1 - \sqrt{r_{12}}}{\sqrt{r_{12}}} \left(\sum_{i=1}^{-2\sqrt{r_{12}}} \frac{h_{i}}{\sqrt{r_{12}}} - \frac{h_{i}}{\sqrt{r_{12}}} \right) e^{-i(\theta_{S} - \theta)}, \quad \Delta^{2} = -i\Delta^{1}$$

$$\frac{M_{1}}{\sqrt{r_{12}}} = \frac{M_{2}}{\sqrt{r_{12}}} \frac{M_{1}}{\sqrt{r_{12}}} \frac{1 - \sqrt{r_{12}}}{\sqrt{r_{12}}} \frac{h_{i}}{\sqrt{r_{12}}} \frac{h_{i$$

 $h_{1,2}$

 $\Phi_{1,2}$

Reconstructed Yukawa couplings (in the charged-lepton and heavy-neutrino mass basis for case Z_8^{τ}):

Reconstructed Yukawa couplings (in the charged-lepton and heavy-neutrino mass basis for case
$$Z_{b}^{1}$$
):

$$r_{12} = \frac{M_{1}}{M_{2}}$$

$$r_{12} = \frac{M_{1}}{M_{2}}$$

$$Y^{1} = \frac{\sqrt{z}\sqrt{M_{1}}}{v_{1}} \frac{\sqrt{2}}{\sqrt{1 - r_{12}}} \begin{pmatrix} -s_{L}e^{i\theta} & -\sqrt{r_{12}}s_{L}e^{i\theta} \\ 0 & 0 \end{pmatrix}, Y^{2} = \frac{\sqrt{x}\sqrt{M_{1}}}{v_{2}} \frac{\sqrt{2}}{\sqrt{1 - r_{12}}} \begin{pmatrix} \frac{y}{x} (1 - \sqrt{r_{12}})c_{L} & -\frac{y}{x} (1 - \sqrt{r_{12}})c_{L} \\ \frac{y}{x} (1 - \sqrt{r_{12}})s_{L} & -\frac{y}{x} (1 - \sqrt{r_{12}})s_{L} \end{pmatrix}$$

$$\frac{M_{1}}{\sqrt{r_{12}}e^{i\theta}} = \frac{M_{1}}{\sqrt{r_{12}}} \int \frac{1}{\sqrt{r_{12}}} \int \frac{1}{\sqrt{r_{12}}$$

Débora Barreiros – FLASY 22 – June 28, 2022

Reconstructed Yukawa couplings (in the charged-lepton and heavy-neutrino mass basis for case Z_8^{τ}):

Reconstructed Yukawa couplings (in the charged-lepton and heavy-neutrino mass basis for case
$$Z_{k}^{1}$$
):

$$r_{12} = \frac{M_{1}}{M_{2}}$$

$$r_{12} = \frac{M_{1}}{M_{2}}$$

$$Y^{1} = \frac{\sqrt{2}\sqrt{M_{1}}}{v_{1}} \frac{\sqrt{2}}{\sqrt{1 - r_{12}}} \begin{pmatrix} -s_{L}e^{i\theta} & -\sqrt{r_{12}}s_{L}e^{i\theta} \\ c_{L}e^{i\theta} & \sqrt{r_{12}}c_{L}e^{i\theta} \end{pmatrix}, Y^{2} = \frac{\sqrt{x}\sqrt{M_{1}}}{v_{2}} \frac{\sqrt{2}}{\sqrt{1 - r_{12}}} \begin{pmatrix} \frac{y}{x} (1 - \sqrt{r_{12}})c_{L} & -\frac{y}{x} (1 - \sqrt{r_{12}})c_{L} \\ \frac{y}{x} (1 - \sqrt{r_{12}})s_{L} & -\frac{y}{x} (1 - \sqrt{r_{12}})s_{L} \end{pmatrix}$$

$$N_{1} = \frac{M_{2}}{v_{1}} \frac{\sqrt{r_{12}}}{1 + \sqrt{r_{12}}} \begin{pmatrix} -2\sqrt{r_{12}} & 1 - \sqrt{r_{12}} \\ 2\sqrt{r_{12}} & 2\sqrt{r_{12}} \end{pmatrix} e^{-i(\theta_{S} - \theta)}, \quad \Delta^{2} = -i\Delta^{1}$$

$$N_{1} = \frac{M_{2}}{v_{1}} \frac{\sqrt{r_{12}}}{1 + \sqrt{r_{12}}} \begin{pmatrix} -2\sqrt{r_{12}} & 1 - \sqrt{r_{12}} \\ 2\sqrt{r_{12}} & 2\sqrt{r_{12}} \end{pmatrix} e^{-i(\theta_{S} - \theta)}, \quad \Delta^{2} = -i\Delta^{1}$$

$$N_{2} = \frac{M_{1}}{v_{1}} \frac{M_{2}}{v_{1}} \frac{\sqrt{r_{12}}}{1 + \sqrt{r_{12}}} \begin{pmatrix} -2\sqrt{r_{12}} & 1 - \sqrt{r_{12}} \\ 2\sqrt{r_{12}} & 2\sqrt{r_{12}} \end{pmatrix} e^{-i(\theta_{S} - \theta)}, \quad \Delta^{2} = -i\Delta^{1}$$

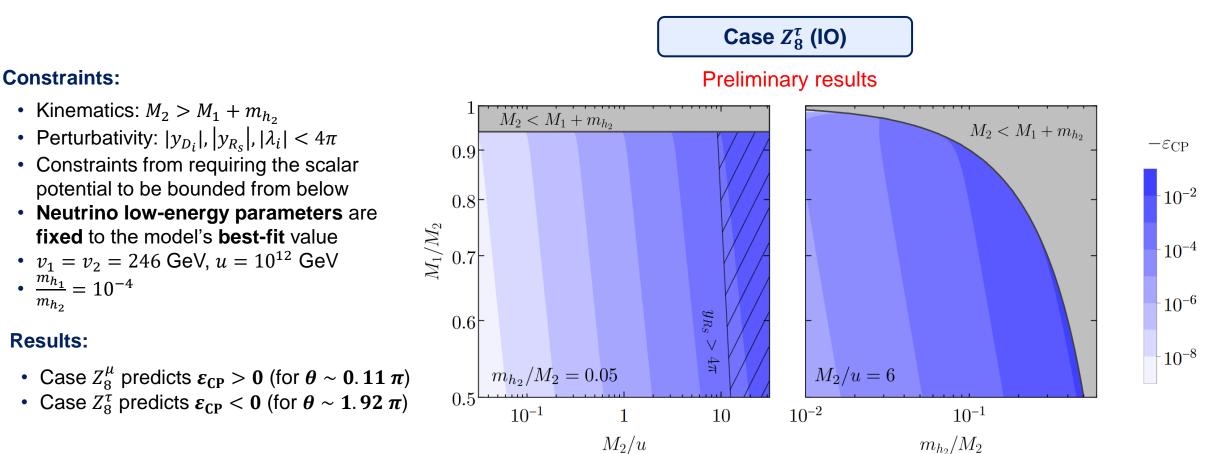
$$N_{2} = \frac{M_{1}}{v_{1}} \frac{M_{2}}{v_{1}} \frac{\sqrt{r_{12}}}{1 + \sqrt{r_{12}}} \frac{1 - \sqrt{r_{12}}}{2\sqrt{r_{12}}} e^{-i(\theta_{S} - \theta)}, \quad \Delta^{2} = -i\Delta^{1}$$

$$N_{2} = \frac{M_{1}}{v_{1}} \frac{M_{2}}{v_{1}} \frac{1 - \sqrt{r_{12}}}{1 + \sqrt{r_{12}}} \frac{1 - \sqrt{r_{12}}}{v_{1}} \frac{1 - \sqrt{r_{12}}}{v_{1}} \frac{1 - \sqrt{r_{12}}}{v_{1}}} \frac{1 - \sqrt{r_{12}}}{v_{1}} \frac{1 -$$

Débora Barreiros – FLASY 22 – June 28, 2022

CP asymmetry results (preliminary)

$$\varepsilon_{\rm CP} = \frac{1}{8\pi} \frac{M_2^2}{u^2} \frac{r_{12} \left[1 - \sqrt{r_{12}}\right] \left[v_1^2 (1 - \sqrt{r_{12}})^2 y^2 - v_1^2 \sqrt{r_{12}} x^2 - v_2^2 \sqrt{r_{12}} xz\right]}{\left[1 + \sqrt{r_{12}}\right]^2 \left[v_1^2 r_{12} x^2 + v_1^2 (\sqrt{r_{12}} - 1)^2 y^2 + v_2^2 r_{12} xz\right]} \sin[2(\theta_S - \theta)] \left[\mathcal{F}_{\rm w,LR}^{2111} - \mathcal{F}_{\rm w,LR}^{2121} - \mathcal{F}_{\rm w,RL}^{2111} + \mathcal{F}_{\rm w,RL}^{2121}\right]$$



Débora Barreiros – FLASY 22 – June 28, 2022

 m_{h_2}

Results:

BAU results (preliminary)

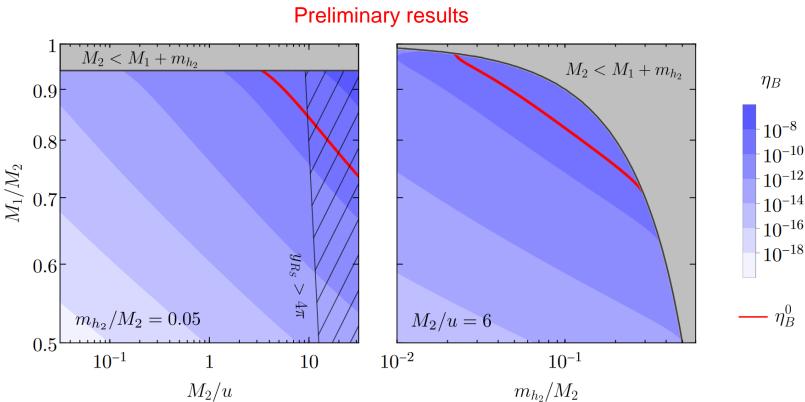
The results for the BAU are obtained by **numerically solving the BEs** in the unflavoured temperature regime ($T \gtrsim 10^{12}$ GeV)

Constraints:

- Kinematics: $M_2 > M_1 + m_{h_2}$
- Perturbativity: $|y_{D_i}|, |y_{R_s}|, |\lambda_i| < 4\pi$
- · Constraints from requiring the scalar potential to be bounded from below
- · Neutrino low-energy parameters are fixed to the model's best-fit value
- $v_1 = v_2 = 246 \text{ GeV}, u = 10^{12} \text{ GeV}$
- $\frac{m_{h_1}}{m_{h_1}} = 10^{-4}$ m_{h_2}
- Only decays and inverse decays are included in the analysis so far

Results:

- Case $Z_{\rm g}^{\mu}$ predicts $\eta_{\rm B} < 0$ (for $\theta \sim 0.11 \pi$) and thus excluded
- Case Z_8^{τ} predicts $\eta_B > 0$ (for $\theta \sim 1.92 \pi$) and the observed abundance is achieved for $M_1 \gtrsim 0.72 M_2, M_2 \gtrsim 2 u, m_{h_2} \gtrsim 2 \times 10^{-2} M_2$



$\eta_B^0 = (6.12 \pm 0.04) \times 10^{-10}$ Planck Collaboration (2018) Case Z_8^{τ} (IO) 10^{-10} 10^{-12} 10^{-16} 10^{-18}

 $\eta_B \equiv \frac{n_B - n_{\bar{B}}}{n_{\gamma}} \simeq 9.40 \times 10^{-3} N^f_{B-L}$

 We explore the possibility for spontaneously CP violation in the complex scalar extension of the type-I seesaw model to be the source of both Dirac and Majorana CP violation, at the electroweak scale, and high-energy CP violation, at the leptogenesis scale

- We explore the possibility for spontaneously CP violation in the complex scalar extension of the type-I seesaw model to be the source of both Dirac and Majorana CP violation, at the electroweak scale, and high-energy CP violation, at the leptogenesis scale
- We generalise CP asymmetry calculation for **arbitrary number** of RH neutrinos, complex scalars and scalar doublets added to the SM

- We explore the possibility for spontaneously CP violation in the complex scalar extension of the type-I seesaw model to be the source of both Dirac and Majorana CP violation, at the electroweak scale, and high-energy CP violation, at the leptogenesis scale
- We generalise CP asymmetry calculation for **arbitrary number** of RH neutrinos, complex scalars and scalar doublets added to the SM
- For illustration, we study an extension of the SM with one complex singlet, two RH neutrinos and a new scalar doublet, where the parameters in the Lagrangian are constrained by the presence of a Z₈ flavour symmetry
 - The Z₈ symmetry highly constrains the neutrino parameter space and leads to a direct relation between the low-energy parameters and the SCPV phase
 - The only allowed CP asymmetry contribution comes from the $h_{1,2}$ scalar mediated wave diagram, being the usual type-I seesaw diagrams, and new 3-body decay and vertex contributions forbidden
 - After solving the BEs by considering the effects of decays and inverse decays, we achieve the observed BAU for $M_1 \gtrsim 0.72 M_2$, $M_2 \gtrsim 2 u$, $m_{h_2} \gtrsim 2 \times 10^{-2} M_2$
 - Next steps: complete our analysis by including scattering terms in the BEs

- We explore the possibility for spontaneously CP violation in the complex scalar extension of the type-I seesaw model to be the source of both Dirac and Majorana CP violation, at the electroweak scale, and high-energy CP violation, at the leptogenesis scale
- We generalise CP asymmetry calculation for **arbitrary number** of RH neutrinos, complex scalars and scalar doublets added to the SM
- For illustration, we study an extension of the SM with one complex singlet, two RH neutrinos and a new scalar doublet, where the parameters in the Lagrangian are constrained by the presence of a Z₈ flavour symmetry
 - The Z₈ symmetry highly constrains the neutrino parameter space and leads to a direct relation between the low-energy parameters and the SCPV phase
 - The only allowed CP asymmetry contribution comes from the $h_{1,2}$ scalar mediated wave diagram, being the usual type-I seesaw diagrams, and new 3-body decay and vertex contributions forbidden
 - After solving the BEs by considering the effects of decays and inverse decays, we achieve the observed BAU for $M_1 \gtrsim 0.72 M_2$, $M_2 \gtrsim 2 u$, $m_{h_2} \gtrsim 2 \times 10^{-2} M_2$

Next steps: complete our analysis by including scattering terms in the BEs

Thank you!

Backup Slides

Spontaneous CP Violation

	Fields	$\mathrm{SU}(2)_L \otimes \mathrm{U}(1)_Y$	\mathcal{Z}_8^e	\mathcal{Z}_8^μ	$\mathcal{Z}_8^{ au}$
Scalars	Φ_1	$({f 2},1/2)$	1		
	Φ_2	(2, 1/2)	ω		
	S	(1 ,0)	ω^2		

Scalar Potential

 $V(\Phi_1, \Phi_2, S) = m_1^2(\Phi_1^{\dagger}\Phi_1) + m_2^2(\Phi_2^{\dagger}\Phi_2) + m_{12}^2 \left[(\Phi_1^{\dagger}\Phi_2) + (\Phi_2^{\dagger}\Phi_1) \right] + \frac{\lambda_1}{2} (\Phi_1^{\dagger}\Phi_1)^2 + \frac{\lambda_2}{2} (\Phi_2^{\dagger}\Phi_2)^2 + \lambda_3 (\Phi_1^{\dagger}\Phi_1) (\Phi_2^{\dagger}\Phi_2) + \lambda_4 (\Phi_1^{\dagger}\Phi_2) (\Phi_2^{\dagger}\Phi_1) + \frac{\lambda_2}{2} (\Phi_2^{\dagger}\Phi_2)^2 + \lambda_3 (\Phi_1^{\dagger}\Phi_1) (\Phi_2^{\dagger}\Phi_2) + \lambda_4 (\Phi_1^{\dagger}\Phi_2) (\Phi_2^{\dagger}\Phi_1) + \frac{\lambda_2}{2} (\Phi_2^{\dagger}\Phi_2)^2 + \lambda_3 (\Phi_2^{\dagger}\Phi_2) + \lambda_4 (\Phi_2^{\dagger}\Phi_2) (\Phi_2^{\dagger}\Phi_1) + \frac{\lambda_2}{2} (\Phi_2^{\dagger}\Phi_2)^2 + \lambda_3 (\Phi_2^{\dagger}\Phi_2) + \lambda_4 (\Phi_2^{\dagger}\Phi$ $+\lambda_{1S}(\Phi_1^{\dagger}\Phi_1)|S|^2 + \lambda_{2S}(\Phi_2^{\dagger}\Phi_2)|S|^2 + m_S^2|S|^2 + m_S'^2\left(S^2 + S^{*2}\right) + \frac{\lambda_S}{2}|S|^4 + \lambda_S'\left(S^4 + S^{*4}\right)$

CP violatir

violating solution:

$$\begin{pmatrix}
\phi_1^0 \\ = \frac{v_1}{\sqrt{2}}, & \langle \phi_2^0 \rangle = \frac{v_2}{\sqrt{2}}, & \langle S \rangle = \frac{ue^{i\theta}}{\sqrt{2}} \\
m_S^2 = -\frac{u^2}{2} (\lambda_S - 4\lambda'_S), & \cos(2\theta) = -\frac{m'_S}{2u^2\lambda'_S} \\
\text{corresponds to the global minimum for } \left(m'_S{}^4 - 4u^4\lambda'_S{}^2\right)/(4\lambda'_S) > 0$$

From the minimisation conditions for

Existence of non-zero vacuum phase at the potential global minimum $\Rightarrow \theta \neq k \pi$ is allowed!