A new software to compute MSSM squared amplitudes for particle physics and relic density calculations

Marco Palmiotto

Université Claude Bernard Lyon 1, France Institut de Physique des 2 infinis

30/06/2022

Motivations

- Extension of the features of the software SuperIso Relic
- The first goal is improving the relic density calculation:

Now

- it is possible to follow the total density of the BSM particles, in freeze-out scenarios
- considering only the MSSM and the NMSSM

After

- following the evolution of the density of particles different from the LSP in the MSSM for freeze-out scenarios
- adding user-defined BSM models
- allowing freeze-in scenarios
- allowing models with multiple stable DM particles

The current goal: relic density

- Follow the evolution of the densities of more than one particle
- This will allow to better explore the parameter space of each viable model
- New setting to compute $\langle\sigma v\rangle$ and $W_{\text {eff }}$
- The current setup relies on self-generated FormCalc code,
- Only for MSSM and NMSSM
- Does not allow the separation of different contributions to $\langle\sigma v\rangle$ and $W_{\text {eff }}$

Why these limitations?

In SuperIso Relic v4:

- Many codes are required
- Several passages of input
- Mathematica dependencies

MARTY

website: https://marty.in2p3.fr

manual: 2011.02478

The content of the package

The package can be downloaded at
https://gitlab.in2p3.fr/marco.palmiotto/mssm-public.git
It contains:

- A file MSSM. cpp containing the code that uses MARTY to generate a numerical library
- The auxiliary files we wrote to add functionalities to MARTY's self-generate libraries
- Files with examples of programs that the user can write
- Some setup scripts

You need to have MARTY installed, and define the environmental variable INSTALLMARTYPATH as the path where it is built

The setup of the package

- To configure and automatically compile the mssm2to2 library, run
./lib_setup.sh -nomake
cd mssm2to2
make
This is automatic by executing ./lib_setup.sh (with no flags)
- To generate the library with the numerical functions present in the MSSM. cpp file, ./lib_generate.sh
- The example files for the executables can be found in the mssm2to2/script directory
- The executables are generated in the directory mssm2to2/bin

Example: giving the inputs

Let us show how to read input from a SLHA file:

```
struct Param_t input;
int err;
ReadLHA(input, "example.lha", &err);
if(err != 0) return err;
input.Print();
```


Example: definition of a process

Let us show how to define $N_{1}, N_{1} \rightarrow Z, Z$:

```
vector<Insertion>v={corr::N_1, corr::N_1, corr::Z, corr::Z};
Process2to2 proc(v);
if(!proc.checkExistance()){
    cerr << "Warning! The process "
        proc.getName() << " is not present in the library!\n";
    return 1;
}
string proc_name = proc.getName();
cout << "We created the process " << proc_name << endl;
```


Example: some calculations - 1

Let us show how to compute quantities:

```
double sqrts = 3000.;
double ctheta = 0.5;
double degrees_of_freedom = proc.getDof();
double squared_amplitude = proc.getSumSquaredAmpl(input, sqrts, ctheta);
double weff_contrib = proc.getDiffWeffContrib(input, sqrts, ctheta);
double diff_xsec = proc.getDiffCrossSection(input, sqrts, ctheta);
double total_xsec = proc.getTotalCrossSection(input, sqrts);
```


Example: some calculations - 2

Let us show how to compute the total $W_{\text {eff }}$:

```
SetOfProc allprocsptr(input);
double dweff = allprocsptr.getdWeff_dcos(input, ctheta);
double weff = allprocsptr.getWeff(sqrts);
```


Some output

Future goals

- Improving performance
- Integration within SuperIso
- Solving multiple coupled Boltzmann equations
- Ideas to improve MARTY and have more portability and integration
- Adding more pre-defined models
- Creating a more general interface for treating user-defined BSM models
- Upgrading SuperIso to study freeze-in
- Improving direct and indirect DM detection in SuperIso
- Adding the NMSSM

Conclusions

- A new way of dealing with 2 to 2 sum of the squared amplitudes is provided in the MSSM at the LO
- It is possible to use the ideas behind our algorithms to generalise the features of MARTY's numerical libraries
- This package provides a library easy to use and to integrate with other software
- Calculations are on average faster than other software we tested
- We validated our results with other software

Thanks for your attention!

Missing resonances

$$
N_{2} N_{4} \rightarrow \mu^{+} \mu^{-}
$$

$+\ldots$

Simpson rule vs trapezoidal rule pt. 1

Simpson rule vs trapezoidal rule pt. 2

