Collider phenomenology of new neutral scalars in a flavoured multi-Higgs model

João Pedro Pino Goncalves^{1,2}

Work done in collaboration with: P.M. Ferreira, Antonio P. Morais, Roman Pasechnik, Felipe F. Freitas, António Onofre, and Vasileios Vatellis

 1 Physics Department and Centre for Research and Development in Mathematics and Applications (CIDMA), Department of Mathematics, University of Aveiro, Portugal.

²Department of Astronomy and Theoretical Physics, Lund university, Sweden.

FLASY 2022 - 9th Workshop on Flavour Symmetries and Consequences in Accelerators and Cosmology - Lisbon

Multi-Higgs extensions: Simplest matter extensions. Predicted in various high-scale **GUT and SUSY** models with extensive phenomenological implications:

- Dark Matter and CP violation;
- Muon (g-2), Flavour anomalies R_D/R_K ;
- Astrophysical consequences e.g. Boson stars, Primordial GWs.

Multiple classes of models (2HDM, 3HDM, C2HDM, etc). Detailed literature on experimental searches on various channels

- **CP-odd scalars**: $A \to \tau^+ \tau^-$ [Phys. Rev. Lett. 125, 051801], $A \to H\mathbf{Z}^0$ [Eur. Phys. J. C 81, 396 (2021)], $A \to b\bar{b}$ [Phys. Rev. D 102, 112006 (2020)];
- **CP-even scalars**: $H \to \tau^+ \tau^-$ [Phys. Rev. Lett. 125, 051801], $H \to b \bar{b}$ [Eur. Phys. J. C 80, 1165 (2020)], $H \to AA$ [JHEP 08, 139 (2020)]
- Singly-charged scalars : $H^\pm \to tb$ [JHEP 06, 145 (2021)], $H^\pm \to cs$ [Phys. Rev. D 102, 072001 (2020)]

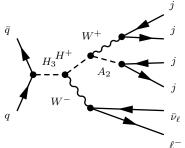
Model used in this work first introduced in [Pedro M. Ferreira et al. arXiv:2202.13153]. 2HDM + singlet with a non-trivial $\mathrm{U(1)}'$ flavour symmetry (Vasileios talk on Thursday). Yukawa Lagrangian

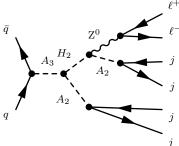
$$\begin{split} -\mathcal{L}_{\text{Yukawa}} &= \overline{q_L^0} \Gamma_a \Phi^a d_R^0 + \overline{q_L^0} \Delta_a \tilde{\Phi}^a u_R^0 + \text{H.c.} + \overline{\ell_L^0} \Pi_a \Phi^a e_R^0 + \overline{\ell_L^0} \Sigma_a \tilde{\Phi}^a \nu_R \\ &+ \frac{1}{2} \overline{\nu_R^c} \left(\mathbf{A} + \mathbf{B} S + \mathbf{C} S^* \right) \nu_R + \text{H.c.} \,, \end{split}$$

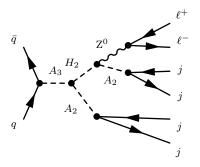
Scalar potential:

$$\begin{split} V_0 = & \quad \mu_a^2 |\Phi^a|^2 + \lambda_a |\Phi^a|^4 + \lambda_3 |\Phi_1|^2 |\Phi_2|^2 + \lambda_4 |\Phi_1^{\dagger}\Phi_2|^2 + \mu_S^2 |S|^2 + \lambda_1' |S|^4 \\ & \quad + \lambda_2' |\Phi_1|^2 |S|^2 + \lambda_3' |\Phi_2|^2 |S|^2 \quad (a=1,2), \end{split}$$

$$V_1 = & \quad \mu_3^2 \Phi_2^{\dagger}\Phi_1 + \frac{1}{2} \mu_b^2 S^2 + a_1 \Phi_1^{\dagger}\Phi_2 S + a_2 \Phi_1^{\dagger}\Phi_2 S^{\dagger} + a_3 \Phi_1^{\dagger}\Phi_2 S^2 + \mathrm{H.c.} \,, \end{split}$$

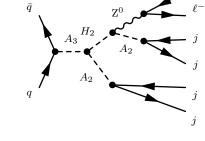

Once the fields develop VEVs, we have **3** CP-even states (h, H_2, H_3) , **2** CP-odd states (A_2, A_3) and a singly charged scalar (H^{\pm}) .


3

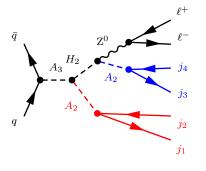

In general (with some exceptions!), most searches focus on BSM Higgs decays to heavy SM states

- Limited searches for decays into 1st/2nd gen. chiral quarks
- ullet Charged Higgs primarily probed in the tbH^\pm vertex
- Limited searches for decays involving multiple BSM Higgs.

Additional parameter space can be probed in more complex final states, involving various BSM scalars



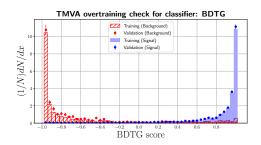
- Two opposite charge, same flavour leptons (muons or electrons);
- At least four jets from 1st/2nd generation quarks (originate from A₂);
- Two pairs of jets with identical mass;
- Pre-selection **LO** cross-section: $\mathcal{O}(10^{-1}) \mathcal{O}(10^{-2})$ fb.


Potentially observable at **run-III** or at the **HL phase** of the LHC. Two pseudoscalars and one CP-even scalar running as internal propagators, **all on-shell** such that

$$M_{A_3} > M_{A_2} + M_{H_2}$$
 and $M_{H_2} > M_{Z^0} + M_{A_2}$

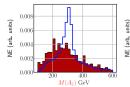
- Dominant backgrounds: $\bar{t}t$ and $\mathbf{Z}^0 + \mathbf{jets}$;
- Sub-leading but relevant: Single top, $\bar{t}t+V$, Diboson;

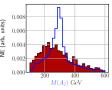
Leading-order cross-sections with MadGraph with MLM jet matching. Hadronization in Pythia8 and fast detector simulation of the ATLAS detector with Delphes. ROOT for analysis of distributions.

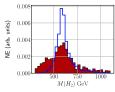


- Mass information can be use to match pairs of jets to original scalars fields;
- $\Delta M = M(j_1, j_2) M(j_3, j_4) < \varepsilon :$
 - **Signal**: small ε ;
 - **Background**: Arbitrary ε ;
- Loop over all possible combinations of jets and select the pairs with smallest ε .

Match jets to H_2 scalar: $\min \left(\left| M(j_n,j_m) - M(\mathbf{Z}^0) - M(H_2) \right| \right)$


If the minimum is for pair (j_3,j_4) , then this is matched to the blue leg and the pair (j_1,j_2) is matched to the red leg.


Since ε is expected to be arbitrary, the matching procedure can help reduce backgrounds for small values of ε .



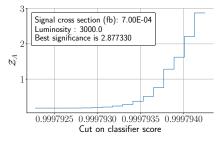
- $p_T(\ell^{\pm}) > 20 \text{ GeV};$
- $|\eta(\ell^{\pm})| < 2.47;$
- $p_T(\text{jet}) > 20 \text{ GeV};$
- $|\eta(\text{jet})| < 2.5;$
- -M(jet) > 10/15 GeV

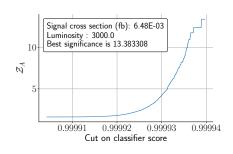
Jet-matched mass distributions

Well-defined Breit-Wigner mass distributions for all scalar fields in the decay chain ($M_{A_2}=300~{
m GeV}$ and $M_{H_2}=600~{
m GeV}$).

	σ (before cuts, in fb)	σ (after cuts, in fb)	Events at run-III	Events at HL-LHC
Signal (H1)	0.0594	0.0064	2	19
Signal (H2)	0.16	0.000699	< 1	2
$Z^0 + jets$	4.12×10^{6}	9.64	2891	28915
$-t\bar{t}$	9.87×10^{5}	28.04	8412	84120
Single top	7.38×10^{4}	14.36	4306	43068
$t\bar{t} + V$	33.41	0.024	7	71
Diboson	7.79×10^4	0.045	13	135

$M(j) > 15~{ m GeV}$ and $\Delta M < 25~{ m GeV}$.

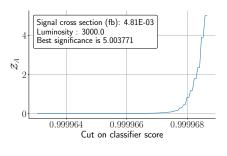

	σ (before cuts, in fb)	σ (after cuts, in fb)	Events at run-III	Events at HL-LHC
Signal (H1)	0.0594	0.029	8	87
Signal (H2)	0.16	0.0048	1	14
$Z^0 + jets$	4.12×10^{6}	92.25	27675	276750
$t\bar{t}$	9.87×10^{5}	327.82	98346	983460
Single top	7.38×10^{4}	124.90	37470	374700
$t\bar{t} + V$	33.41	0.25	75	750
Diboson	7.79×10^4	13.39	4017	40170

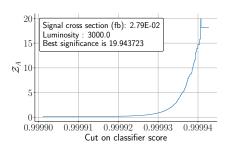

M(j) > 10 GeV and $\Delta M < 35 \text{ GeV}$.

H1: $M_{A_2} = 300 \text{ GeV} / M_{H_2} = 600 \text{ GeV}$; **H2:** $M_{A_2} = 215 \text{ GeV} / M_{H_2} = 400 \text{ GeV}$;

Neural networks to separate signal and background and compute statistical significance following methods of [Adam Elwood and Dirk Krücker arXiv:1806.00322]

$$M(j) > 15 \text{ GeV}$$
 and $\Delta M < 25 \text{ GeV}$




(a)
$$M_{A_2} = 215 \text{ GeV}/M_{H_2} = 400 \text{ GeV}$$

(a)
$$M_{A_2} = 215 \text{ GeV}/M_{H_2} = 400 \text{ GeV}$$
 (b) $M_{A_2} = 300 \text{ GeV}/M_{H_2} = 600 \text{ GeV}$

Better results for higher cuts on data, therefore limited by statistics. This signal can be potentially probed at the HL-LHC

$$M(j) > 10 \; \mathrm{GeV}$$
 and $\Delta M < 35 \; \mathrm{GeV}$

(a)
$$M_{A_2} = 215 \text{ GeV}/M_{H_2} = 400 \text{ GeV}$$

(a)
$$M_{A_2} = 215 \text{ GeV}/M_{H_2} = 400 \text{ GeV}$$
 (b) $M_{A_2} = 300 \text{ GeV}/M_{H_2} = 600 \text{ GeV}$

Relaxed constraints on jet mass distributions increases the significance. Particularly helpful for lower mass scalar fields. Still, high cuts on data for optimal results.

To finalize . . .

- I have discussed a particular signal topology, involving various BSM scalar fields in the decay chain, and studied its implications on future runs of the LHC.
- I have shown that the combination of kinematic information of the scalar fields can be used to match the original scalars to the outgoing jets;
- Employing neural networks, I have shown that these type of topologies can be probed for at the high-luminosity phase of the LHC.

Collider phenomenology of new neutral scalars in a flavoured multi-Higgs model

Thank you for your attention

FLASY 2022 - 9th Workshop on Flavour Symmetries and Consequences in Accelerators and Cosmology - Lisbon

