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  ☞ Smallness of neutrino mass:

Open Questions - Theoretical

mν ≪ me, u, d

  ☞ Flavor structure:
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Fermion mass and hierarchy problem ➟ 

Dominant fraction (22 out of 28) of free 
parameters in SM



Non-Abelian Discrete Flavor Symmetries
• Large neutrino mixing motivates discrete flavor 
symmetries


• A4 (tetrahedron)


• T´ (double tetrahedron) 


• S3 (equilateral triangle)


• S4 (octahedron, cube)


• A5 (icosahedron, dodecahedron)


• ∆27 


• Q6 


• …..
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The Horizontal Symmetry

• Three families are the

same under vertical

symmetry; yet

different under

horizontal symmetry

• Zeros in the mass

matrices are protected

by a family symmetry

SU(2)F
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Neutrino Mass Matrix from A4

•Imposing A4 flavor 
symmetry on the 
Lagrangian


•A4 spontaneously broken by 
flavon fields
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Ma, Rajasekaran (2001); Babu, Ma, Valle (2003); 
Altarelli, Feruglio (2005)



Neutrino Mass Matrix from A4
• Imposing A4 flavor symmetry on the Lagrangian


• A4 spontaneously broken by flavon fields


• always diagonalized by TBM matrix, independent of the two free 
parameters 
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under which the transformation properties of various fields are summarized in Table I, the above

Lagrangian is the most general one. Here the operators that couple to H5T3T3 are not shown in the

above Lagrangian as their contributions can be absorbed into a redefinition of the coupling constant

yt. In addition, we neglect the operator H5FT3�⌥⌥� in LTF since its contribution is negligible.

Also not shown are those that contribute to LFF which can be absorbed into a redefinition of the

parameter u and ⌃0. Note that in principle, viable phenomenology may still be obtained when

more operators are allowed, The additional discrete symmetry that is needed in that case would be

smaller. Nevertheless, more Yukawa coupling constants will be present and the model would not

be as predictive. The Z12 ⇥ Z �
12 symmetry also forbids proton and other nucleon decay operators

to very high orders; it is likely this symmetry might be linked to orbifold compactification in extra

dimensions. Note that, the Z12 ⇥ Z �
12 symmetry also separates the neutrino and charged fermion

sectors, so that the neutrinos only couple to the GTST2 breaking sector. Furthermore, it allows the

45-dim Higgs, �45, to appear only in the operator shown above, and thus is crucial for obtaining

the Georgi-Jarlskog (GJ) relations.

The interactions in L⇥ give the following neutrino mass matrix [3], which is invariant under

GTST2 [9],

M⇥ =
⇤v2

Mx

�

⇧⇧⇧⇤

2⌅0 + u �⌅0 �⌅0

�⌅0 2⌅0 u� ⌅0

�⌅0 u� ⌅0 2⌅0

⇥

⌃⌃⌃⌅
, (13)

and we have absorbed the Yukawa coupling constants by rescaling the VEV’s. This mass matrix

M⇥ is form diagonalizable, i.e. the orthogonal matrix that diagonzlizes it does not depend on the

eigenvalues. Its diagonal form is,

V T
⇥ M⇥V⇥ = diag(u + 3⌅0, u, �u + 3⌅0)

v2
u

Mx
, (14)

where the diagonalization matrix V⇥ is the tri-bimaximal mixing matrix, V⇥ = UTBM given in Eq. 2.

This tri-bimaximal mixing pattern and the mass eigenvalues in the neutrino sector are thus the

same as in all previous analyses in models based on A4 and (d)T , which has been shown to be

consistent with experimental data.

The down type quark and charged lepton masses are generated by LTF . Because the renormal-

izable operator H5FT3 is forbidden by the (d)T symmetry, the generation of b quark mass requires

the breaking of (d)T , which naturally explains the hierarchy between mt and mb. The b quark mass,

and thus the ⇧ mass, is generated upon the breaking of (d)T ⇤ GT and (d)T ⇤ GS. As mb and m⇤

are generated by the same operator, H5FT3⌃�, we obtain the successful b� ⇧ unification relation.
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I. INTRODUCTION

The measurements of neutrino oscillation parameters have entered a precision era. The global

fit to current data from neutrino oscillation experiments give the following best fit values and 2⇥

limits for the mixing parameters [1],

sin2 �12 = 0.30 (0.25� 0.34), sin2 �23 = 0.5 (0.38� 0.64), sin2 �13 = 0 (< 0.028) . (1)

These values for the mixing parameters are very close to the values arising from the so-called

“tri-bimaximal” mixing (TBM) matrix [2],

UTBM =

�

⇧⇧⇧⇤

⌥
2/3 1/

⌅
3 0

�
⌥

1/6 1/
⌅

3 �1/
⌅

2

�
⌥

1/6 1/
⌅

3 1/
⌅

2

⇥

⌃⌃⌃⌅
, (2)

which predicts sin2 �atm, TBM = 1/2 and sin �13,TBM = 0. In addition, it predicts sin2 �⇥,TBM = 1/3

for the solar mixing angle. Even though the predicted �⇥,TBM is currently still allowed by the

experimental data at 2⇥, as it is very close to the upper bound at the 2⇥ limit, it may be ruled out

once more precise measurements are made in the upcoming experiments.

It has been pointed out that the tri-bimaximal mixing matrix can arise from a family symmetry

in the lepton sector based on A4 [3] , which is a group that describes the even permutations of

four objects and it has four in-equivalent representations, 1, 1⇤, 1⇤⇤ and 3. However, due to its lack

of doublet representations, CKM matrix is an identity in most A4 models. In addition, to explain

the mass hierarchy among the charged fermions, one needs to resort to additional symmetry. It is

hence not easy to implement A4 as a family symmetry for both quarks and leptons [4].

In this letter, we consider a di�erent finite group, the double tetrahedral group, (d)T , which is a

double covering of A4. (For a classification of all finite groups up to order 32 that can potentially

be a family symmetry, see [5]). Because it has the same four in-equivalent representations as in

A4, the tri-bimaximal mixing pattern can be reproduced. In addition, (d)T has three in-equivalent

doublets, 2, 2⇤, and 2⇤⇤, which can be utilized to give the 2 + 1 representation assignments for the

quarks [6]. In the context of SU(2) flavor group, this assignment has been known to give realistic

quark mixing matrix and mass hierarchy [7]. Utilizing (d)T as a family symmetry for both quarks

and leptons has been considered before in non-unified models [8, 9]. In Ref. [8], both quarks

and leptons (including the neutrinos) have 2 ⇥ 1 representation assignments under (d)T , and the

prediction for the solar mixing angle is ⇤ 10�3, which is in the region of small mixing angle solution

that has been ruled out by SNO and KamLAND. A recent attempt in [9] generalizes the (d)T to

2
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Ma, Rajasekaran (2001); Babu, Ma, Valle (2003); 
Altarelli, Feruglio (2005)

2 free parameters

Neutrino Mixing 
Angles from Group 

Theory



Experimental Precision
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Figure from Song, Li, Argüelles, 

Bustamante, Vincent (2020)

Are precisions in 
model 

predictions 
compatible with 

experimental 
precisions?



Flavor Model Structure: A4 
• interplay between the symmetry breaking 

patterns in two sectors lead to lepton mixing 
(BM, TBM, ...)


• symmetry breaking achieved through flavon VEVs

• each sector preserves different residual 

symmetry

• full Lagrangian does not have these residual 

symmetries

• general approach: include high order terms in 

holomorphic superpotential

• possible to construct models where higher order 

holomorphic superpotential terms vanish to ALL 
orders
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GF

Ge Gν

charged lepton 
sector


neutrino

 sector


〈Φe〉 〈Φν〉

〈 Φe〉∝ (1,0,0) 〈 Φν〉∝ (1,1,1)

e.g. A4



Corrections to Kinetic Terms

• Corrections to the kinetic terms induced by family 
symmetry breaking generically are present, should be 
properly included

• can be along different directions than RG corrections

• dominate over RG corrections (no loop suppression, 

copious heavy states)

• could be sizable for neutrino mass models based on 

discrete family symmetries, e.g. A4


• nontrivial flavor structure can be induced

• non-zero CP phase can be induced

• Presence of additional undetermined parameters


M.-C.C, M. Fallbacher, M. Ratz, C. Staudt (2012)

Leurer, Nir, Seiberg (1993); Dudas, Pokorski, Savoy (1995); Dreiner, Thomeier (2003)  
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Kähler Corrections
• Superpotential: holomorphic


• Kähler potential: non-holomorphic


• Canonical Kähler potential


• Correction 
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- can be induced by flavon VEVs

- important for order parameter ~ θc

- can lead to non-trivial mixing

GF

Ge Gν

〈Φe〉 〈Φν〉

Figure 1: The flavor symmetry GF gets broken to different subgroups in different sectors
of the theory.

At the first glance, one may think that the corrections are related to possible higher–
order terms that have to be added to the leading order superpotential (1.1). However,
it is rather straightforward to construct models in which such higher–order corrections
are absent to all orders. We will discuss such examples in a future publication [4].

The true solution to this puzzle is that models of the above type do not predict exact
relations such as (tri–)bi–maximal mixing due to the presence of the Kähler corrections
induced by the flavon VEVs [5,6], even if higher order holomorphic corrections are absent.
The Kähler potential should contain all terms consistent with the flavor symmetry,

K = Kcanonical +∆K , (1.3)

where the relevant canonical terms include (with the SM gauge multiplets being set to
zero)

Kcanonical ⊃
(

Lf
)†

δfg L
g +

(

Rf
)†

δfg R
g , (1.4)

and ∆K contains contractions of Lf and Rf and their Hermitean conjugates with the
flavons. First of all, each of these terms in ∆K introduces one new parameter, i.e.
its respective Kähler coefficient. Furthermore, once the flavons attain their VEVs, the
flavor symmetry is broken thus modifying the Kähler metric. This modification ∆K of
the Kähler potential can be written as

∆K =
(

Lf
)†

(∆KL)fg L
g +

(

Rf
)†

(∆KR)fg R
g , (1.5)

with Hermitean matrices ∆KL and ∆KR whose structures are determined by the flavor
symmetries and the flavon VEVs.

The necessary field redefinitions to compensate for these additional terms and to re-
trieve a canonical Kähler potential affect the superpotential. In particular, the Majorana
mass matrix of the neutrinos and the Yukawa coupling matrix of the charged leptons
are altered. This leads to changes of the neutrino mixing parameters irrespective of the
existence of higher–order terms in the superpotential.

The purpose of this letter is to provide the first analytic discussion of these changes,
leaving a more complete analysis for a future publication [4]. In section 2 we will start
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1 Introduction

The observed patterns of fermion masses and mixing may originate from underlying
flavor symmetries. Typically, such flavor symmetries are assumed to be spontaneously
broken by the vacuum expectation values (VEVs) of certain ‘flavon’ fields. Given a large
enough flavor symmetry, one may thus hope to obtain a scheme that allows us to derive
testable predictions. This applies, in particular, to settings in which flavor is generated
at a very high scale, which cannot be directly accessed at colliders.

In this work, we study supersymmetric extensions of the standard model, in which
flavor is generated at a high scale. For concreteness, we will take the scale of the flavon
VEVs and the cut–off of the theory to be around the unification scale, though our
results do not depend on this choice. On the other hand, one can imagine models in
which there is a large difference between these two scales or which are renormalizable. In
such models, non–renormalizable corrections including the corrections from the Kähler
potential discussed in this letter become unimportant.

In order to be specific, we focus on the lepton sector of the theory, although our
analysis can also be applied to the quark sector. Generically, the relevant superpotential
reads, at the leading order,

Wleading =
1

Λ
(Φe)gf L

g Rf Hd +
1

ΛΛν

(Φν)gf L
g Hu L

f Hu , (1.1)

where Lg and Rf (with the flavor indices 1 ≤ f, g ≤ 3) denote the lepton doublets and
singlets, respectively, Hu and Hd are the Higgs doublets of the supersymmetric standard
model, whereas Φe and Φν are the appropriate flavons. The two scales involved are the
cut–off scale of the theory Λ and the see–saw scale Λν . Once Φe and Φν acquire their
VEVs, this leads to the effective superpotential

Weff = (Ye)gf L
g Rf Hd +

1

4
κgf L

g Hu L
f Hu . (1.2)

In many models, one is left with a situation in which the flavon VEVs 〈Φe〉 and 〈Φν〉
respect certain residual symmetries, which are then dubbed symmetries of the charged
lepton Yukawa couplings or the neutrino mass matrix, respectively (cf. figure 1). Pre-
dictions of such models are then based on these symmetries.

However, one may question if these are really robust predictions of the respective
models. In particular, while certain terms in the superpotential appear to possess the
aforementioned symmetries, the Lagrangean density often exhibits no residual symmetry.
In other words, the combined VEVs 〈Φe〉 and 〈Φν〉 break the flavor symmetry completely.
Moreover, the so–called predictions are subject to quantum corrections. For instance,
the bi–maximal [1,2] or tri–bi–maximal [3] mixing patterns are known not to be invariant
under the renormalization group. On the other hand, the statements below (1.2) do not
single out a particular scale. Therefore, one may wonder how such corrections can be
consistent with the statement that the charged lepton Yukawa couplings or the neutrino
mass matrix exhibit certain symmetries.
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<flavon vev> / Λ ~ θc



Kähler Corrections
• Consider infinitesimal change, x :


• rotate to canonically normalized L’: 


⇒ corrections to neutrino mass matrix
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off–diagonal terms in the Yukawa matrix. Hence, the transformed Yukawa matrix is still
diagonal, only the eigenvalues may be changed. This implies that such a field redefinition
does not have any influence on the neutrino mixing matrix. In conclusion, the model
can be modified such that the corrections from the right–handed sector cannot change
the mixing parameters, and therefore, they are not discussed any further.

3.4 Analytic formulae for Kähler corrections

It is possible to derive some simple analytic formulae for the change of the mixing
parameters due to small non–diagonal terms in the Kähler potential.1 Suppose that,
after the flavon fields attain their VEVs, the Kähler potential reads

K = Kcanonical +∆K = L† (1− 2xP )L (3.3)

with a Hermitean matrix P and an infinitesimal expansion parameter x. The Kähler
metric is diagonalized to first order in x by the field redefinition

L → L′ = (1− xP )L . (3.4)

This field redefinition affects the effective neutrino mass operator κ for the canonically
normalized left–handed doublets L′ f ,

Wν #
1

4
(L′ fHu)

T
[

κ+ xP T κ+ xκP
]

gf
L′ gHu , (3.5)

where κ · v2u = 2mν with mν specified in equation (2.7). That is, the neutrino mass
operator has effectively become x–dependent, and the resulting neutrino mass matrix
depends on x as

mν(x) # mν + xP T mν + xmν P . (3.6)

This leads to the differential equation

dmν

dx
= P T mν +mν P (3.7)

for the neutrino mass matrix, which holds locally at x = 0. This equation has the same
structure as the one governing the renormalization group (RG) evolution of the mass
operator. In [11], analytic formulae describing the evolution of the mixing parameters
have been derived. Using an analogous procedure, one can compute the derivatives of the
mixing parameters at x = 0. With the Kähler coefficients and the ratios of flavon VEVs
and high scale Λ as input parameters, the resulting formulae can be used to predict the
change of the mixing parameters due to a non–trivial Kähler metric for not too large
deviations from the canonical one. The detailed derivation of these formulae and a more

1We only discuss the neutrino sector here. The left–handed and right–handed charged lepton sectors
can be dealt with separately in a similar manner. This will be discussed in a future publication [4].
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Kähler Corrections
• Consider infinitesimal change, x :


• rotate to canonically normalized L’: 


⇒ corrections to neutrino mass matrix


⇒ differential equation


• same structure as the RG evolutions for neutrino mass operator

• size of Kähler corrections can be substantially larger (no loop suppression)
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off–diagonal terms in the Yukawa matrix. Hence, the transformed Yukawa matrix is still
diagonal, only the eigenvalues may be changed. This implies that such a field redefinition
does not have any influence on the neutrino mixing matrix. In conclusion, the model
can be modified such that the corrections from the right–handed sector cannot change
the mixing parameters, and therefore, they are not discussed any further.

3.4 Analytic formulae for Kähler corrections

It is possible to derive some simple analytic formulae for the change of the mixing
parameters due to small non–diagonal terms in the Kähler potential.1 Suppose that,
after the flavon fields attain their VEVs, the Kähler potential reads

K = Kcanonical +∆K = L† (1− 2xP )L (3.3)

with a Hermitean matrix P and an infinitesimal expansion parameter x. The Kähler
metric is diagonalized to first order in x by the field redefinition

L → L′ = (1− xP )L . (3.4)

This field redefinition affects the effective neutrino mass operator κ for the canonically
normalized left–handed doublets L′ f ,

Wν #
1

4
(L′ fHu)

T
[

κ+ xP T κ+ xκP
]

gf
L′ gHu , (3.5)

where κ · v2u = 2mν with mν specified in equation (2.7). That is, the neutrino mass
operator has effectively become x–dependent, and the resulting neutrino mass matrix
depends on x as

mν(x) # mν + xP T mν + xmν P . (3.6)

This leads to the differential equation

dmν

dx
= P T mν +mν P (3.7)

for the neutrino mass matrix, which holds locally at x = 0. This equation has the same
structure as the one governing the renormalization group (RG) evolution of the mass
operator. In [11], analytic formulae describing the evolution of the mixing parameters
have been derived. Using an analogous procedure, one can compute the derivatives of the
mixing parameters at x = 0. With the Kähler coefficients and the ratios of flavon VEVs
and high scale Λ as input parameters, the resulting formulae can be used to predict the
change of the mixing parameters due to a non–trivial Kähler metric for not too large
deviations from the canonical one. The detailed derivation of these formulae and a more

1We only discuss the neutrino sector here. The left–handed and right–handed charged lepton sectors
can be dealt with separately in a similar manner. This will be discussed in a future publication [4].
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Back to A4 Example
• Kähler corrections due to flavon field:


• linear in flavon:


• possible to forbid these terms with additional symmetries


12

θ12 θ13 θ23

TBM prediction: arctan
(√

0.5
)

≈ 35.3◦ 0 45◦

Best fit values (±1σ):
(

33.6+1.1
−1.0

)◦ (

8.93+0.46
−0.48

)◦ (

38.4+1.4
−1.2

)◦

Table 2.1: Tri–bi–maximal prediction for the neutrino mixing angles and best fit values
from the global fit by [10].

3 Corrections due to Kähler potential terms

As discussed in the introduction, apart from the canonical terms, there may exist extra
terms in the Kähler potential induced by the flavon VEVs. In the A4 example model
discussed above, these terms are contractions of the left–handed lepton doublets, which
transform as an A4 triplet, with one or several flavons. After the flavons acquire a
VEV, these terms lead to a Kähler metric with off–diagonal terms. We shall sketch the
computation for the A4 example model, leaving the general derivation to [4].

3.1 Linear flavon corrections

The leading order contributions are linear in the flavons. These linear terms are only
suppressed by one power of the ratio of the flavon VEV to the fundamental scale of the
theory. The contributions in the A4 model discussed above read schematically

∆Klinear =
∑

i∈{a,s}

(

κ(i)
Φν

Λ
∆K(i)

L† (L⊗Φν)3i
+

κ(i)
Φe

Λ
∆K(i)

L† (L⊗Φe)3i

)

+
κξ

Λ
∆KξL†L+h.c. . (3.1)

However, it is easy to forbid any of these terms, by introducing an additional symmetry
(such as the 4 symmetry in the example model) under which all flavons are charged.
Hence, we do not consider the linear flavon corrections any further but turn to contribu-
tions which are quadratic in the flavons, and cannot be forbidden by any (conventional)
symmetry.

3.2 Second order corrections

The corrections to the Kähler metric which are second order in the flavon VEVs can be di-
vided into two classes. The first class consists of terms that are of the form (LΦν)†(LΦν)
or (LΦe)†(LΦe), i.e. they are quadratic in one specific flavon. As mentioned above, these
cannot be forbidden by a (conventional) symmetry. This is not true for the second class
which consists of terms of the form (LΦν)†(LΦe), i.e. they are contractions involving
two different flavons. For the same reasons as in the linear case, the second class is not
considered here.

All corrections discussed here can thus be obtained from suitable contractions of
the terms (L ⊗ Φν)

†
R
(L ⊗ Φν)R′ and (L ⊗ Φe)

†
R
(L ⊗ Φe)R′ using the rules stated in

(2.2). Although there are numerous possible contractions, several of them give the same
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Back to A4 Example
• Kähler corrections due to flavon field:


‣quadratic in flavon


‣such terms cannot be forbidden by any (conventional) symmetry


‣Kähler corrections once flavon fields attain VEVs


‣additional parameters          diminish predictivity of the scheme


‣possible to forbid all contributions from RH sector as well as                                 
with additional symmetries in the particular A4 model considered
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Back to A4 Example
•Kähler corrections due to flavon field 𝜒 :


‣ six possible non-trivial contractions:
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the contraction of the leptons Lf with � gives us five irreducible representations,

(L�)1 = L1 �1 + L2 �3 + L3 �2 , (3.2a)

(L�)10 = L3 �3 + L1 �2 + L2 �1 , (3.2b)

(L�)100 = L2 �2 + L1 �3 + L3 �1 , (3.2c)

(L�)31
=

0

@
L1 �1 + ! L2 �3 + !

2
L3 �2

L3 �3 + ! L1 �2 + !
2
L2 �1

L2 �2 + ! L1 �3 + !
2
L3 �1

1

A , (3.2d)

(L�)32
=

0

@
L1 �1 + !

2
L2 �3 + ! L3 �2

L3 �3 + !
2
L1 �2 + ! L2 �1

L2 �2 + !
2
L1 �3 + ! L3 �1

1

A , (3.2e)

with ! = e
2⇡i
3 . All of these can be contracted with their Hermitean conjugates to form

a trivial singlet. In addition, the triplets can be contracted cross–wise. For the model
discussed in section 2.1 one obtains original formula wrong (?)

�K �
6X

i=1


(i) �K

(i)

(L�)†X(L�)X
+ h.c. , (3.3)

where

�K
(1)

(L�)†1(L�)1
= (L†

1 �
†
1 + L

†
2 �

†
3 + L

†
3 �

†
2)(L1 �1 + L2 �3 + L3 �2) , (3.4a)

�K
(2)

(L�)†
10 (L�)10

= (L†
3 �

†
3 + L

†
1 �

†
2 + L

†
2 �

†
1)(L3 �3 + L1 �2 + L2 �1) , (3.4b)

�K
(3)

(L�)†
100 (L�)100

= (L†
2 �

†
2 + L

†
1 �

†
3 + L

†
3 �

†
1)(L2 �2 + L1 �3 + L3 �1) , (3.4c)

�K
(4)

(L�)†31
(L�)31

= (L†
1 �

†
1 + !

2
L
†
2 �

†
3 + ! L

†
3 �

†
2)(L1 �1 + ! L2 �3 + !

2
L3 �2)

+ (L†
3 �

†
3 + !

2
L
†
1 �

†
2 + ! L

†
2 �

†
1)(L3 �3 + ! L1 �2 + !

2
L2 �1)

+ (L†
2 �

†
2 + !

2
L
†
1 �

†
3 + ! L

†
3 �

†
1)(L2 �2 + ! L1 �3 + !

2
L3 �1) ,(3.4d)

�K
(5)

(L�)†32
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= (L†
1 �

†
1 + ! L

†
2 �

†
3 + !

2
L
†
3 �

†
2)(L1 �1 + !

2
L2 �3 + ! L3 �2)

+ (L†
3 �

†
3 + ! L

†
1 �

†
2 + !

2
L
†
2 �

†
1)(L3 �3 + !

2
L1 �2 + ! L2 �1)

+ (L†
2 �

†
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†
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L
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†
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L1 �3 + ! L3 �1) ,(3.4e)
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2
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2
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†
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L
†
1 �

†
3 + ! L

†
3 �

†
1)(L2 �2 + !

2
L1 �3 + ! L3 �1) .(3.4f)

Inserting the VEV of � will change the normalization of the Li di↵erently if the 

coe�cients do not coincide. (???)
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2
L2 �1
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L3 �1
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L1 �2 + ! L2 �1
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2
L1 �3 + ! L3 �1

1

A , (3.2e)

with ! = e
2⇡i
3 . All of these can be contracted with their Hermitean conjugates to form

a trivial singlet. In addition, the triplets can be contracted cross–wise. For the model
discussed in section 2.1 one obtains original formula wrong (?)

�K �
6X

i=1


(i) �K

(i)

(L�)†X(L�)X
+ h.c. , (3.3)
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�K
(1)
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†
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†
2 �

†
3 + L

†
3 �

†
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†
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†
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†
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†
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†
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†
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2
L
†
1 �

†
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†
3 �

†
1)(L2 �2 + !

2
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Inserting the VEV of � will change the normalization of the Li di↵erently if the 

coe�cients do not coincide. (???)
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•Contributions from Flavon VEVs  (1,0,0) and (1,1,1)


•five independent “basis” matrices


•RG correction: essentially along PIII = diag(0,0,1) direction due to yτ 
dominance
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we only have 5 independent matrices in total,

PI =

0

@
1 0 0
0 0 0
0 0 0

1
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0 1 0
0 0 0

1

A , (3.7b)

PIII =

0

@
0 0 0
0 0 0
0 0 1

1

A , (3.7c)

PIV =

0

@
0 1 1
1 0 1
1 1 0

1

A , (3.7d)

PV =

0

@
0 i �i
�i 0 i
i �i 0

1

A . (3.7e)

In appendix B we derive simple analytic formulae that allow us to understand the
the impact of such corrections on the mixing parameters. Applying these formulae, one
can express the changes of the mixing parameters for a given form P of the Kähler
correction. For example, for a Kähler correction of the form PIV one obtains, starting
from ✓12 = ⇡/6, ✓13 = 0, ✓23 = ⇡/4, '1 = '2 = 0

�✓13 = 
�
2

2
p
3

m1(2m2 �m3) +m3(m2 � 2m3)p
2 (m1 �m3)(m3 �m2)

, (3.8)

where � = v/⇤, ⇤ being the cut–o↵ scale and v being the flavon VEV.

3.1 Reconsideration of the example models

Using the results from the foregoing section, we can compute the Kähler corrections
which arise in the example models discussed in Section 2.1 and see how the predictions
change.

4 Conclusions

. . .
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An Example: Enhanced θ13 in A4

16

0.00 0.02 0.04 0.06 0.08 0.10
0

2

4

6

8

m1 [eV]

∆
θ 1

3
[◦
]

∆θ13 an.
∆θ13 num.

Figure 2: Change of θ13 due to the Kähler correction ∆K shown in equation (3.8) for
κV v2/Λ2 = (0.2)2. The continuous line shows the result of equation (3.9), which was
obtained using a linear approximation (cf. section 3.4), while the dashed line shows the
result of a numerical computation. As one can see, the linear approximation yields a
very accurate estimate on the true change ∆θ13.

consistent with the expectation, as m1 → O(0.1 eV) corresponds to the near degenerate
regime for the neutrino masses, where an enhanced correction to the mixing angle is
expected.

In contrast to the case of θ13, the changes of θ12 and θ23 are predicted to be zero if one
uses the linear extrapolation of their changes starting from the tri–bi–maximal mixing
pattern. However, as we have seen above, θ13 can undergo a substantial change such
that also the other two mixing angles change due to higher order non-linear terms. We
have confirmed this behavior numerically, using the MixingParameterTools package [13].
The dependence of the change on the lightest neutrino mass m1 is shown in figure 3.
Both changes are significantly smaller than the one of θ13.

A further interesting consequence of the Kähler correction is the generation of CP
violation. It arises due to the fact that the matrix PV is complex. In fact, the Dirac CP
phase δ, which is not properly defined for exact tri–bi–maximal mixing due to θ13 = 0, is
close to δ = 3π/2 taking into account the corrections. Note that similar relations can also
be obtained from the holomorphic superpotential in models with T ′ flavor symmetry [14].

The chosen example illustrates that predictions which are solely based on the in-
spection of the superpotential are not very reliable. Indeed, for example, the global fit
value for θ13 =

(

8.93+0.46
−0.48

)◦
[10] (cf. table 2.1) can be accommodated without resorting

to higher–order contributions from the superpotential, provided the neutrino mass spec-
trum is not too hierarchical, the ratio of flavon VEV to the fundamental scale v/Λ is of
the order of the Cabibbo angle and the Kähler coefficient κV is of order one.

Our result also shows that the Kähler corrections can be more significant than the
effects of the RG evolution.
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Figure 2: Change of θ13 due to the Kähler correction ∆K shown in equation (3.8) for
κV v2/Λ2 = (0.2)2. The continuous line shows the result of equation (3.9), which was
obtained using a linear approximation (cf. section 3.4), while the dashed line shows the
result of a numerical computation. As one can see, the linear approximation yields a
very accurate estimate on the true change ∆θ13.

consistent with the expectation, as m1 → O(0.1 eV) corresponds to the near degenerate
regime for the neutrino masses, where an enhanced correction to the mixing angle is
expected.

In contrast to the case of θ13, the changes of θ12 and θ23 are predicted to be zero if one
uses the linear extrapolation of their changes starting from the tri–bi–maximal mixing
pattern. However, as we have seen above, θ13 can undergo a substantial change such
that also the other two mixing angles change due to higher order non-linear terms. We
have confirmed this behavior numerically, using the MixingParameterTools package [13].
The dependence of the change on the lightest neutrino mass m1 is shown in figure 3.
Both changes are significantly smaller than the one of θ13.

A further interesting consequence of the Kähler correction is the generation of CP
violation. It arises due to the fact that the matrix PV is complex. In fact, the Dirac CP
phase δ, which is not properly defined for exact tri–bi–maximal mixing due to θ13 = 0, is
close to δ = 3π/2 taking into account the corrections. Note that similar relations can also
be obtained from the holomorphic superpotential in models with T ′ flavor symmetry [14].

The chosen example illustrates that predictions which are solely based on the in-
spection of the superpotential are not very reliable. Indeed, for example, the global fit
value for θ13 =

(

8.93+0.46
−0.48

)◦
[10] (cf. table 2.1) can be accommodated without resorting

to higher–order contributions from the superpotential, provided the neutrino mass spec-
trum is not too hierarchical, the ratio of flavon VEV to the fundamental scale v/Λ is of
the order of the Cabibbo angle and the Kähler coefficient κV is of order one.

Our result also shows that the Kähler corrections can be more significant than the
effects of the RG evolution.
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Correction to TBM 
prediction of θ13 = 0

PV

δ ≃ π/2



Corresponding Change in θ12
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Figure 3: Changes of (a) θ12 and (b) θ23 due to the Kähler correction ∆K shown in
equation (3.8) for κV v2/Λ2 = (0.2)2 computed numerically.

4 Conclusions

We have carefully re–examined models in which different flavons appear to break a given
flavor symmetry GF down to different subgroups in different sectors of the theory. In the
context of supersymmetric settings, the fact that there is no residual symmetry in the
full Lagrangean manifests itself in corrections to the Kähler potential K that break GF

in all subsectors. We have argued that the corresponding higher–order terms in K are, in
a way, unavoidable as they cannot be forbidden by any (conventional) symmetry. These
terms come with certain coefficients, which are not determined by the symmetries of the
model and, therefore, introduce additional continuous parameters. We have also argued
that the Kähler corrections are generically much larger and, therefore, more relevant
than renormalization effects, which can also be understood as Kähler corrections along
a very specific direction.

In order to make our analysis more concrete, we have outlined the discussion of
the corrections in a model based on the flavor symmetry GF = A4 × 4 [8]. We have
presented the first results of an analytic discussion of the Kähler corrections, i.e. a simple
analytic formula that allows us to express the change in the prediction on the mixing
parameters induced by the respective flavon VEVs. While leaving the full discussion
for a future publication [4], we have explicitly shown that in the simple A4 model,
which predicts tri–bi–maximal mixing at leading order, one of the flavon VEVs induces
a large variation of the mixing angle θ13 while leaving the other mixing angles essentially
unchanged. An optimistic interpretation of this possibility may amount to the statement
that even simple models like the one discussed here can be consistent with the recent
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Figure 2: Change of θ13 due to the Kähler correction ∆K shown in equation (3.8) for
κV v2/Λ2 = (0.2)2. The continuous line shows the result of equation (3.9), which was
obtained using a linear approximation (cf. section 3.4), while the dashed line shows the
result of a numerical computation. As one can see, the linear approximation yields a
very accurate estimate on the true change ∆θ13.

consistent with the expectation, as m1 → O(0.1 eV) corresponds to the near degenerate
regime for the neutrino masses, where an enhanced correction to the mixing angle is
expected.

In contrast to the case of θ13, the changes of θ12 and θ23 are predicted to be zero if one
uses the linear extrapolation of their changes starting from the tri–bi–maximal mixing
pattern. However, as we have seen above, θ13 can undergo a substantial change such
that also the other two mixing angles change due to higher order non-linear terms. We
have confirmed this behavior numerically, using the MixingParameterTools package [13].
The dependence of the change on the lightest neutrino mass m1 is shown in figure 3.
Both changes are significantly smaller than the one of θ13.

A further interesting consequence of the Kähler correction is the generation of CP
violation. It arises due to the fact that the matrix PV is complex. In fact, the Dirac CP
phase δ, which is not properly defined for exact tri–bi–maximal mixing due to θ13 = 0, is
close to δ = 3π/2 taking into account the corrections. Note that similar relations can also
be obtained from the holomorphic superpotential in models with T ′ flavor symmetry [14].

The chosen example illustrates that predictions which are solely based on the in-
spection of the superpotential are not very reliable. Indeed, for example, the global fit
value for θ13 =

(

8.93+0.46
−0.48

)◦
[10] (cf. table 2.1) can be accommodated without resorting

to higher–order contributions from the superpotential, provided the neutrino mass spec-
trum is not too hierarchical, the ratio of flavon VEV to the fundamental scale v/Λ is of
the order of the Cabibbo angle and the Kähler coefficient κV is of order one.

Our result also shows that the Kähler corrections can be more significant than the
effects of the RG evolution.

9

M.-C.C., M. Fallbacher, M. Ratz, C. Staudt (2012)

Correction to TBM 
prediction of θ12 = 35.3º

PV



Corresponding Change in θ23
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Figure 3: Changes of (a) θ12 and (b) θ23 due to the Kähler correction ∆K shown in
equation (3.8) for κV v2/Λ2 = (0.2)2 computed numerically.

4 Conclusions

We have carefully re–examined models in which different flavons appear to break a given
flavor symmetry GF down to different subgroups in different sectors of the theory. In the
context of supersymmetric settings, the fact that there is no residual symmetry in the
full Lagrangean manifests itself in corrections to the Kähler potential K that break GF

in all subsectors. We have argued that the corresponding higher–order terms in K are, in
a way, unavoidable as they cannot be forbidden by any (conventional) symmetry. These
terms come with certain coefficients, which are not determined by the symmetries of the
model and, therefore, introduce additional continuous parameters. We have also argued
that the Kähler corrections are generically much larger and, therefore, more relevant
than renormalization effects, which can also be understood as Kähler corrections along
a very specific direction.

In order to make our analysis more concrete, we have outlined the discussion of
the corrections in a model based on the flavor symmetry GF = A4 × 4 [8]. We have
presented the first results of an analytic discussion of the Kähler corrections, i.e. a simple
analytic formula that allows us to express the change in the prediction on the mixing
parameters induced by the respective flavon VEVs. While leaving the full discussion
for a future publication [4], we have explicitly shown that in the simple A4 model,
which predicts tri–bi–maximal mixing at leading order, one of the flavon VEVs induces
a large variation of the mixing angle θ13 while leaving the other mixing angles essentially
unchanged. An optimistic interpretation of this possibility may amount to the statement
that even simple models like the one discussed here can be consistent with the recent
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Figure 2: Change of θ13 due to the Kähler correction ∆K shown in equation (3.8) for
κV v2/Λ2 = (0.2)2. The continuous line shows the result of equation (3.9), which was
obtained using a linear approximation (cf. section 3.4), while the dashed line shows the
result of a numerical computation. As one can see, the linear approximation yields a
very accurate estimate on the true change ∆θ13.

consistent with the expectation, as m1 → O(0.1 eV) corresponds to the near degenerate
regime for the neutrino masses, where an enhanced correction to the mixing angle is
expected.

In contrast to the case of θ13, the changes of θ12 and θ23 are predicted to be zero if one
uses the linear extrapolation of their changes starting from the tri–bi–maximal mixing
pattern. However, as we have seen above, θ13 can undergo a substantial change such
that also the other two mixing angles change due to higher order non-linear terms. We
have confirmed this behavior numerically, using the MixingParameterTools package [13].
The dependence of the change on the lightest neutrino mass m1 is shown in figure 3.
Both changes are significantly smaller than the one of θ13.

A further interesting consequence of the Kähler correction is the generation of CP
violation. It arises due to the fact that the matrix PV is complex. In fact, the Dirac CP
phase δ, which is not properly defined for exact tri–bi–maximal mixing due to θ13 = 0, is
close to δ = 3π/2 taking into account the corrections. Note that similar relations can also
be obtained from the holomorphic superpotential in models with T ′ flavor symmetry [14].

The chosen example illustrates that predictions which are solely based on the in-
spection of the superpotential are not very reliable. Indeed, for example, the global fit
value for θ13 =

(

8.93+0.46
−0.48

)◦
[10] (cf. table 2.1) can be accommodated without resorting

to higher–order contributions from the superpotential, provided the neutrino mass spec-
trum is not too hierarchical, the ratio of flavon VEV to the fundamental scale v/Λ is of
the order of the Cabibbo angle and the Kähler coefficient κV is of order one.

Our result also shows that the Kähler corrections can be more significant than the
effects of the RG evolution.

9

M.-C.C., M. Fallbacher, M. Ratz, C. Staudt (2012)

Correction to TBM 
prediction of θ23 = 45º

PV



Modular Flavor Symmetries
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Modular Symmetries
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edges ⇒ lattice basis vectors
points in plane identified if 
differ by a lattice translation

Equivalent TORI related 
by Modular Symmetries



Modular Symmetries

• TORI: fundamental domain not unique


• Basis Vectors are related:


• Volume of fundamental domain the same ⇒ 
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• Finite Modular Group (quotient group):                   where 
principal congruence group 𝜞(N) is 


• Generators of the quotient group 𝜞N satisfy


• Some examples


22

Modular Symmetries

𝜞2 ≃ S3,    𝜞3 ≃ A4,     𝜞4 ≃ S4,     𝜞5 ≃ A5

S2 = 1,   (ST)3 = 1,   TN = 1

𝜞



• Imposing modular symmetry 𝜞 on the Lagrangian:

• Yukawa Couplings = Modular Forms at level “N” w/ weight “k”

23

Modular Symmetries

representation matrix of 𝜞N 

representation matrix of 𝜞N 

k = ki1 + ki2 + … + kin

ki : integers

Feruglio (2017)



• Weinberg Operator


• Traditional A4 Flavor Symmetry


• Yukawa Coupling Y → Flavon VEVs (A4 triplet, 6 real parameters)


• Modular A4 Flavor Symmetry


• Yukawa Coupling Y → Modular Forms (A4 triplet, 2 real parameters)
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A Toy Modular A4 Model
Feruglio (2017)

⇒

⇒



• Level (N) = 3, Weight (k) = 2, in terms of Dedekind eta-function

25

Modular Forms
Feruglio (2017)



• Input Parameters:


• Predictions:

26

Feruglio (2017)

A Toy Modular A4 Model
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Kähler Corrections in Modular A4 Model

• Particle Content


• Weinberg Operator


• Superpotential for Charged Leptons: couple to      ⇒ 

diagonal mass matrix  

Feruglio (2017)
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Kähler Corrections in Modular A4 Model

• Minimal Kähler Potential for charged leptons


• Additional terms allowed in Kähler Potential


• “Leading terms” vs “corrections” on equal footing

MCC, Ramos-Sánchez, Ratz (2019)
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Kähler Corrections in Modular A4 Model

• Additional terms induced by flavon VEV  


• Modifying Kähler metric


• Back to Canonical Basis ➜ sizable corrections to mixing 
parameters

MCC, Ramos-Sánchez, Ratz (2019)



Kähler Corrections in Modular A4 Model
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M.-C.C., Ramos-Sánchez, Ratz (2019)
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Quasi-Eclectic Modular Symmetry

• Quasi-eclectic setup:


• Field Content:


MCC, Knapp-Pérez, Ramos-Hamud, 
Ramos-Sánchez, Ratz, Shukla (2021)

 = A4 x 𝞒3
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Quasi-Eclectic Modular Symmetry

• Symmetry Breaking
 MCC, Knapp-Pérez, Ramos-Hamud, 
Ramos-Sánchez, Ratz, Shukla (2021)

• VEVs pattern resulting 
from vacuum alignment
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Quasi-Eclectic Modular Symmetry

• After Symmetry Breaking: diagonal 𝞒3


• Neutrino Sector:


• Charged lepton sector:


MCC, Knapp-Pérez, Ramos-Hamud, 
Ramos-Sánchez, Ratz, Shukla (2021)
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Quasi-Eclectic Modular Symmetry

• After Symmetry Breaking: diagonal 𝞒3


• Kähler Corrections:


• Corrections involving only Y: absent to all orders, due to 
traditional A4 symmetry


• Corrections involving flavon      : suppressed 


MCC, Knapp-Pérez, Ramos-Hamud, 
Ramos-Sánchez, Ratz, Shukla (2021)
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Quasi-Eclectic Modular Symmetry

• After Symmetry Breaking: diagonal 𝞒3


• Kähler Corrections:


• Corrections involving only Y: absent to all orders, due to 
traditional A4 symmetry


• Corrections involving flavon      : suppressed 


MCC, Knapp-Pérez, Ramos-Hamud, 
Ramos-Sánchez, Ratz, Shukla (2021)
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• Modular Flavor Symmetries: Significant 
reduction of the number of parameters


• Kähler Corrections: worse compared to the 
case with traditional discrete flavor 
symmetries


• In quasi-eclectic setup: corrections can be 
greatly reduced to the level compatible 
with experiment uncertainty


• Ultimate goal: more economical scheme for 
realistic predictions, with highly suppressed/
calculable Kähler corrections

37

Conclusion


