ON THE INTERPLAY BETWEEN FLAVOUR ANOMALIES AND NEUTRINO PROPERTIES

 ANTONIO PESTANA MORAISDEPARTAMENTO DEFISICA DA UNIVERSIDADE DE AVEIRO AND GENIER FOR RESEARCH AND:DEVELOPMENT IN MATHEMATICS AND APPLICATIONS(CIDMA)

CO-AUTHOR'S: R. PASECHNIK, GONGALVES, W POROD, F. FREITAS

$$
\text { FLASY } 2022 \text { - IST }
$$

The SM is a tremendously successful theory that explains "boringly" well all its predictions!

However, it fails to...

- Explain neutrino masses
- Explain dark matter
- Explain CP violation and matter/anti-matter assymetry
- Explain the observed flavour structure

And it is in tension with several emergent anomalies

B-physics

$$
\begin{gathered}
\bar{B} \rightarrow D^{(*)} \ell \bar{\nu}_{l} \quad B \rightarrow K^{*} \ell^{+} \ell^{-} \quad B^{+} \rightarrow K^{+} \ell^{+} \ell^{-} \\
B_{s} \rightarrow \mu^{+} \mu^{-} \quad B^{0} \rightarrow \mu^{+} \mu^{-}
\end{gathered}
$$

m_{W}^{CDF} (?)

[Eur. Phys. J. C 81, 226 (2021)]
$R_{K}=\frac{B r\left(B^{+} \rightarrow K^{+} \mu^{+} \mu^{-}\right)}{\operatorname{Br}\left(B^{+} \rightarrow K^{+} e^{+} e^{-}\right)}=0.846_{-0.051}^{+0.055}$

[Nature Phys. 18, 277 (2022)]

$$
R_{K^{*}}=\frac{\operatorname{Br}\left(B \rightarrow K^{*} \mu^{+} \mu^{-}\right)}{\operatorname{Br}\left(B \rightarrow K^{*} e^{+} e^{-}\right)}=0.685_{-0.116}^{+0.160}
$$

[Phys. Rev. D 96, 095000 (2017)]
Tantalising hints for new physics in B decays
[Eur. Phys. J. C 81, 952 (2021)]

[K. Szabo talk at Moriond 2022 on behalf of the BMW collaboration]

$$
a_{\mu}=2.51(59) \times 10^{-9}
$$

[Phys. Rev. Let. 126, 141801 (2021)]

[K. Szabo talk at Moriond 2022 on behalf of the BMW collaboration]

$$
a_{\mu}=2.51(59) \times 10^{-9}
$$

[Phys. Rev. Let. 126, 141801 (2021)]

CDF-II reported a 7.2σ deviation

[Science 376, n6589, 170-176 (2022)]

Modification to the T-parameter ($\mathrm{S}=\mathrm{U}=0$)

- Pre CDF-II: $\hat{T}=(0.39 \pm 0.47) \times 10^{-3}$ [PDG]
- CDF-II: $\hat{T}=(0.88 \pm 0.14) \times 10^{-3}$
[A. Strumia 2204:04191]
Must be independently confirmed

Neutrinos

On its own, neutrino masses are an extraordinary indication for new physics (NP)

Can neutrino properties and Banomalies be two faces of the same NP?

Use N.O. and PMNS mixing as input parameters in our analysis

[Taken from mpi-hg.mpg.de]

Our proposal: Accommodate all the above in the most economical framework

$$
\text { B-physics }+a_{\mu}+m_{W}+m_{\nu}+V_{\mathrm{PMNS}}+V_{\mathrm{CKM}}+
$$

$$
m_{l}+m_{l}+m_{q}+
$$

LFV + LFC Z decays

SM + Singlet leptoquark + Doublet leptoquark

$$
S_{1} \sim(\overline{\mathbf{3}}, \mathbf{1})_{1 / 3} \quad \tilde{R}_{2} \sim(\mathbf{3}, \mathbf{2})_{1 / 6}
$$

This field content has an UV inspiration...

$[\mathrm{SU}(3)]^{3} \times \mathrm{SU}(2)_{\mathrm{F}} \times \mathrm{U}(1)_{\mathrm{F}} \longrightarrow \quad$ Flavour Unified Theory

[Morais, Pasechnik, Porod, Eur. Phys. J. C 80, (2020) 12, 1162]

$$
L=\left(\begin{array}{cc}
H & \ell_{\mathrm{L}} \\
\ell_{\mathrm{R}} & \phi
\end{array}\right) \quad Q_{\mathrm{L}}=\left(\begin{array}{ll}
q_{\mathrm{L}} & D_{\mathrm{L}}
\end{array}\right) \quad Q_{\mathrm{R}}=\left(\begin{array}{ll}
q_{\mathrm{R}}^{c} & D_{\mathrm{R}}^{c}
\end{array}\right)^{\top}
$$

This FUT contains an emergent \mathbb{Z}_{2} B-parity

$$
\mathbb{P}_{B}=(-1)^{3 B+2 S}
$$

- Only allows leptoquark interactions

$$
\bar{L} \bar{Q}_{\mathrm{L}} \overline{\tilde{Q}}_{\mathrm{R}}+\bar{L}_{\underline{Q_{\mathrm{Q}}}}{\stackrel{+}{Q_{\mathrm{R}}}}^{+}
$$

- Proton is stable

The model

$$
\mathcal{L}_{\mathrm{Y}}=\Theta_{i j} \bar{Q}_{j}^{c} L_{i} S+\Omega_{i j} \bar{L}_{i} d_{j} R^{\dagger}+\Upsilon_{i j} \bar{u}_{j} e_{i} S^{\dagger}+\text { h.c. }
$$

$$
\begin{aligned}
V \supset & -\mu^{2}|H|^{2}+\mu_{S}^{2}|S|^{2}+\mu_{R}^{2}|R|^{2}+\lambda\left(H^{\dagger} H\right)^{2}+g_{H R}\left(H^{\dagger} H\right)\left(R^{\dagger} R\right)+g_{H R}^{\prime}\left(H^{\dagger} R\right)\left(R^{\dagger} H\right)+g_{H S}\left(H^{\dagger} H\right)\left(S^{\dagger} S\right)+ \\
& \left(a_{1} R S H^{\dagger}+\text { h.c. }\right) .
\end{aligned}
$$

Gauge Basis

$$
R \equiv\binom{R^{2 / 3}}{R^{1 / 3}}, S
$$

Neutrino Masses

$\left(M_{\nu}\right)_{i j}=\frac{3}{16 \pi^{2}\left(m_{S_{2}^{1 / 3}}^{2}-m_{S_{1}^{1 / 3}}^{2}\right)} \frac{v a_{1}}{\sqrt{2}} \ln \left(\frac{m_{S_{2}^{1 / 3}}^{2}}{m_{S_{1}^{1 / 3}}^{2}}\right) \sum_{m, a}\left(m_{d}\right)_{a} V_{a m}\left(\Theta_{i m} \Omega_{j a}+\Theta_{j m} \Omega_{i a}\right)$,
No flavour ansatz in Θ and Ω with several texture zeros

Left generic as well as Υ

LQ Yukawa matrices are left generic in order to fully accommodate 3 neutrino masses and a viable PMNS mixing

CHALLENGE: Keep all LFV and LFC observables under control while improving B-physics and a_{μ}

$b \rightarrow s \ell l$

$C_{9}^{b s e l}\left(\bar{s}^{\mu}{ }^{\mu} P_{\mathrm{L}} b\right)\left(\bar{e} \gamma_{\mu} t\right)$
$C_{10}^{b s e l}\left(\bar{s} \gamma^{\mu} P_{\mathrm{L}} b\right)\left(\bar{\ell}_{\gamma_{\mu}} \gamma^{5} t\right)$

$$
\begin{aligned}
& C_{9}^{b_{9} s \operatorname{sef}}\left(\bar{s} \gamma^{\mu} P_{\mathrm{R}} b\right)\left(\bar{e}_{\gamma_{\mu}} \theta\right) \\
& C_{10}^{\text {bssel }}\left(\overline{\bar{s}} \gamma^{\mu} P_{\mathrm{R}} b\right)\left(\bar{e}_{\gamma_{\mu} \gamma^{5}} \theta^{2}\right.
\end{aligned}
$$

Contribution to $R_{K, K^{*}}$ and $B_{s} \rightarrow \mu \mu$

Recall that...

$$
\begin{aligned}
& C_{9,10}^{b s y \mu} \text { and } C_{9,10}^{\text {bsee }} \longrightarrow R_{K}, R_{K^{*}}<1 \\
& C_{9,10}^{\text {bss } \mu} \text { and } C_{9,10}^{\text {bsee }} \longrightarrow R_{K}<1 \text { and } R_{K^{*}}>1 \text { or } R_{K}>1 \text { and } R_{K^{*}}<1
\end{aligned}
$$

[Altmannshofer, Stangl, Eur. Phys. J. C. 81 (2021), 10, 952]

$b \rightarrow c \tau \bar{\nu}$

$$
\begin{aligned}
& \left(\bar{c}_{\mathrm{R}} b_{\mathrm{L}}\right)\left(\bar{\tau}_{\mathrm{R}} \nu_{\tau}\right) \text { only to } R_{D} \text { as QCD form factor }\left\langle D^{*}\right| \bar{c} b|\bar{B}\rangle=0 \\
& \left(\bar{c}_{\mathrm{R}} \gamma_{5} b_{\mathrm{L}}\right)\left(\bar{\tau}_{\mathrm{R}} \nu_{\tau}\right) \text { only to } R_{D^{*}} \text { as QCD form factor }\langle D| \bar{c} \gamma_{5} b|\bar{B}\rangle=0
\end{aligned}
$$

[Bardhan, Bhakti, Ghosh, JHEP 01 (2017) 125]

$$
R_{D} \text { and } R_{D^{*}} \text { compete with } R_{K^{*}}^{\nu \nu}=\frac{\operatorname{Br}\left(\bar{B} \rightarrow K^{*} \bar{\nu} \nu\right)}{\operatorname{Br}\left(\bar{B} \rightarrow K^{*} \bar{\nu} \nu\right)^{\mathrm{SM}}}<2.7(\text { replace } \Upsilon \rightarrow \Theta)
$$

Largest contribution for the pairing: $\Theta_{\mu t}$ and $\Upsilon_{\mu t}$ However, other pairings can induce LFV decays as E.g.:

$$
\Upsilon_{\mu t} \rightarrow \Upsilon_{e t}: \mu \rightarrow e \gamma, \mu \rightarrow e e e
$$

Hierarchies in the entries of LQ Yukawa matrices needed

Numerical Results

- Use SPheno for spectrum generation, calculate Br's and Wilson Coefficients
- Use flavio to calculate flavour observables

Experimental measurement
$(g-2)_{\mu}$
\hat{T}
$R_{K}[1.1,6.0]$
$R_{K *}[1.1,6.0]$ $R_{K}[0.045,1.1]$
R_{D}
$R_{D^{*}}$
$\operatorname{BR}(h \rightarrow e \mu)$
$\operatorname{BR}(h \rightarrow e \tau)$
$\mathrm{BR}(h \rightarrow \mu \tau)$
$\operatorname{BR}(\mu \rightarrow e \gamma)$ $\operatorname{BR}(\mu \rightarrow$ eee $)$ $\mathrm{BR}(\tau \rightarrow e \gamma)$ $\operatorname{BR}(\tau \rightarrow \mu \gamma)$ $\operatorname{BR}(\tau \rightarrow e e e)$ $\operatorname{BR}(\tau \rightarrow e \mu \mu)$ $\operatorname{BR}(\tau \rightarrow \mu e e)$ $\mathrm{BR}(Z \rightarrow \mu e)$ $\operatorname{BR}(Z \rightarrow \tau e)$ $\operatorname{BR}(Z \rightarrow \mu \tau)$ $\operatorname{BR}(\tau \rightarrow \pi e)$ $\operatorname{BR}(\tau \rightarrow \pi \mu)$ $\mathrm{BR}(\tau \rightarrow \phi e)$ $\operatorname{BR}(\tau \rightarrow \phi \mu)$ $\mathrm{BR}(\tau \rightarrow \rho e)$ $\operatorname{BR}(\tau \rightarrow \rho \mu)$
d_{e}
d_{μ}
${ }_{d_{\tau}}^{d_{\mu}}$
$\operatorname{BR}\left(B^{0} \rightarrow \mu \mu\right)$ $\mathrm{BR}\left(B_{s} \rightarrow \mu \mu\right)$ $\mathrm{R}\left(B \rightarrow \chi_{s} \gamma\right)$ $B \rightarrow R_{K}^{\nu \nu}$
$R^{\nu \nu}$ $R_{K^{*}}^{\nu}$ $\left|\operatorname{Re} \delta g_{R}^{e}\right|$ $\left|\operatorname{Re} \delta g_{L}^{e}\right|$ $\left|\operatorname{Re} \delta g_{R}^{\mu}\right|$ $\left|\operatorname{Re} \delta g_{L}^{\mu}\right|$ $\left|\operatorname{Re} \delta g_{R}^{\tau}\right|$
$\left|\operatorname{Re} \delta g_{L}^{\tau}\right|$
$(0.88 \pm 0.14) \times 10^{-3}[21]$
$0.846_{-0.039-0.012}^{+0.042+0.013}[18]$
$0.685_{-0.069-0.047}^{0.113+0.047}[74]$
${ }_{0.660_{-0.070}^{0.0 .024}}^{0.0110+0.024}[74]$ $0.340 \pm 0.027 \pm 0.013[75]$ $0.295 \pm 0.011 \pm 0.008[75]$ $<6.1 \times 10^{-5}[95 \% \mathrm{CL}][63]$ $<4.7 \times 10^{-3}[95 \% \mathrm{CL}][63]$ $<2.5 \times 10^{-3}[95 \% \mathrm{CL}][63]$ $<4.2 \times 10^{-13}[90 \% \mathrm{CL}][63]$ $<1.0 \times 10^{-12}[90 \% \mathrm{CL}][63]$ $<3.3 \times 10^{-8}[90 \% \mathrm{CL}][63]$ $<4.4 \times 10^{-8}[90 \% \mathrm{CL}][63]$ $<2.7 \times 10^{-8}[90 \% \mathrm{CL}][63]$ $<2.7 \times 10^{-8}$ [90\% CL] [63] $<1.5 \times 10^{-8}[90 \% \mathrm{CL}][63]$ $7.5<\times 10^{-7}[95 \% \mathrm{CL}][63]$ $9.8<\times 10^{-6}[95 \% \mathrm{CL}][63]$ $1.2<\times 10^{-5}[95 \% \mathrm{CL}][63]$ $<8.0 \times 10^{-8}[90 \% \mathrm{CL}][63]$ $<1.1 \times 10^{-7}[90 \% \mathrm{CL}][63]$ $<3.1 \times 10^{-8}[90 \% \mathrm{CL}][63]$ $<8.4 \times 10^{-8}[90 \% \mathrm{CL}][63]$ $<1.8 \times 10^{-8}[90 \% \mathrm{CL}][63]$ $<1.2 \times 10^{-8}[90 \% \mathrm{CL}][63]$
$<1.1 \times 10^{-29}$ e.cm [90\% CL] [63]
$<1.8 \times 10^{-19} \mathrm{e} . \mathrm{cm}[95 \% \mathrm{CL}][63]$
$<(1.15 \pm 1.70) \times 10^{-17}$ e.cm [95\% CL] [76] $(0.56 \pm 0.70) \times 10^{-10}[19]$ $(2.93 \pm 0.35) \times 10^{-9}[19]$ 1.009 ± 0.075 3.9 [77] 2.7 [77] $\leq 2.9 \times 10^{-4}[37,78]$ $\leq 3.0 \times 10^{-4}[37,78]$ $\leq 1.3 \times 10^{-3}[37,78]$ $\leq 1.1 \times 10^{-3}[37,78]$ $\leq 6.2 \times 10^{-4}[37,78]$

Observable	Experimental measurement
$F_{L}\left(B^{+} \rightarrow K \mu \mu\right)$	$0.34 \pm 0.10 \pm 0.06[79]$
$S_{3}\left(B^{+} \rightarrow K \mu \mu\right)$	$0.14_{-0.14-0.02}^{+0.15+0.02}[79]$
$S_{4}\left(B^{+} \rightarrow K \mu \mu\right)$	$-0.04_{-0.16-0.04}^{+0.17+0.04}[79]$
$S_{5}\left(B^{+} \rightarrow K \mu \mu\right)$	$0.24_{-0.15-0.04}^{+0.12+0.04}[79]$
$A_{F B}\left(B^{+} \rightarrow K \mu \mu\right)$	$-0.05 \pm 0.12 \pm 0.03[79]$
$S_{7}\left(B^{+} \rightarrow K \mu \mu\right)$	$-0.01_{-0.17-0.01}^{+0.19+0.01}[79]$
$S_{8}\left(B^{+} \rightarrow K \mu \mu\right)$	$0.21_{-0.20-0.05}^{+0.22+0.05}[79]$
$S_{9}\left(B^{+} \rightarrow K \mu \mu\right)$	$0.28_{-0.12-0.06}^{+0.25+0.06}[79]$
$P_{1}\left(B^{+} \rightarrow K \mu \mu\right)$	$0.44_{-0.40-0.11}^{+0.38+0.11}[79]$
$P_{2}\left(B^{+} \rightarrow K \mu \mu\right)$	$-0.05 \pm 0.12 \pm 0.03[79]$
$P_{3}\left(B^{+} \rightarrow K \mu \mu\right)$	$-0.42_{-0.21-0.05}^{+0.20+0.05}[79]$
$P_{4}^{\prime}\left(B^{+} \rightarrow K \mu \mu\right)$	$-0.092_{-0.35-0.12}^{+0.36+0.12}[79]$
$P_{5}^{\prime}\left(B^{+} \rightarrow K \mu \mu\right)$	$0.51_{-0.22-0.12}^{+0.30+0.12}[79]$
$P_{6}^{\prime}\left(B^{+} \rightarrow K \mu \mu\right)$	$-0.02_{-0.34-0.06}^{+0.40+0.06}[79]$
$P_{8}^{\prime}\left(B^{+} \rightarrow K \mu \mu\right)$	$-0.45_{-0.39-0.09}^{+0.50+0.09}[79]$
$F_{L}\left(B^{0} \rightarrow K \mu \mu\right)$	$0.255 \pm 0.032 \pm 0.007[80]$
$S_{3}\left(B^{0} \rightarrow K \mu \mu\right)$	$0.034 \pm 0.044 \pm 0.003[80]$
$S_{4}\left(B^{0} \rightarrow K \mu \mu\right)$	$0.059 \pm 0.050 \pm 0.004[80]$
$S_{5}\left(B^{0} \rightarrow K \mu \mu\right)$	$0.227 \pm 0.041 \pm 0.008[80]$
$A_{F B}\left(B^{0} \rightarrow K \mu \mu\right)$	$-0.004 \pm 0.040 \pm 0.004[80]$
$S_{7}\left(B^{0} \rightarrow K \mu \mu\right)$	$0.006 \pm 0.042 \pm 0.002[80]$
$S_{8}\left(B^{0} \rightarrow K \mu \mu\right)$	$-0.003 \pm 0.051 \pm 0.001[80]$
$S_{9}\left(B^{0} \rightarrow K \mu \mu\right)$	$-0.055 \pm 0.041 \pm 0.002[80]$
$P_{1}\left(B^{0} \rightarrow K \mu \mu\right)$	$0.090 \pm 0.119 \pm 0.009[80]$
$P_{2}\left(B^{0} \rightarrow K \mu \mu\right)$	$-0.003 \pm 0.038 \pm 0.003[80]$
$P_{3}\left(B^{0} \rightarrow K \mu \mu\right)$	$-0.073 \pm 0.057 \pm 0.003[80]$
$P_{4}^{\prime}\left(B^{0} \rightarrow K \mu \mu\right)$	$-0.135 \pm 0.118 \pm 0.003[80]$
$P_{5}^{\prime}\left(B^{0} \rightarrow K \mu \mu\right)$	$-0.521 \pm 0.095 \pm 0.024[80]$
$P_{6}^{\prime}\left(B^{0} \rightarrow K \mu \mu\right)$	$-0.015 \pm 0.094 \pm 0.007[80]$
$P_{8}^{\prime}\left(B^{0} \rightarrow K \mu \mu\right)$	$-0.007 \pm 0.122 \pm 0.002[80]$
$C_{9}^{b s \mu \mu}$	$-0.82 \pm 0.23[80]$
$C_{10}^{b s \mu \mu}$	$0.14 \pm 0.23[80]$
$C_{9}^{\prime b s \mu \mu}$	$-0.10 \pm 0.34[80]$
$C_{10}^{\prime b s \mu \mu}$	$-0.33 \pm 0.23[80]$
$C_{9}^{b s e e}$	$-0.24 \pm 1.17[80]$
$C_{10}^{b s e e}$	$-0.24 \pm 0.78[80]$

To assess the quality of the results one uses the likelihood function:

$$
\chi^{2}=\left(\mathcal{O}_{\exp }-\mathcal{O}_{\mathrm{th}}\right)^{\mathrm{T}}\left(\boldsymbol{\Sigma}_{\mathrm{th}}+\boldsymbol{\Sigma}_{\exp }\right)^{-1}\left(\mathcal{O}_{\exp }-\mathcal{O}_{\mathrm{th}}\right)
$$

- Take a conservative approach by assuming that $\chi_{\text {SM,LFV }}^{2}=0$
- Use reported experimental correlations and determine theoretical ones with sampled points

To assess the quality of the results one uses the likelihood function:

$$
\chi^{2}=\left(\mathcal{O}_{\exp }-\mathcal{O}_{\mathrm{th}}\right)^{\mathrm{T}}\left(\boldsymbol{\Sigma}_{\mathrm{th}}+\boldsymbol{\Sigma}_{\exp }\right)^{-1}\left(\mathcal{O}_{\exp }-\mathcal{O}_{\mathrm{th}}\right)
$$

- Take a conservative approach by assuming that $\chi_{\text {SM,LFV }}^{2}=0$
- Use reported experimental correlations and determine theoretical ones with sampled points
- Consider 3 scenarios:
- a) a_{μ} and m_{W} both consistent with SM,
- b) only m_{W} consistent with SM,
- c) neither of them consistent with SM

Inputs SM + neutrinos: $v, m_{h}, m_{q}, m_{\ell}, m_{\nu}, V_{\mathrm{CKM}}, V_{\mathrm{PMNS}}$

$$
1.5<m_{\mathrm{LQs}} / \mathrm{TeV}<8 \quad-100<a_{1} / \mathrm{GeV}<100
$$

Inputs LQs:

$$
\begin{gathered}
g_{H S}, g_{H R}, g_{H R}^{\prime} \in \pm\left[10^{-8}, 4 \pi\right] \quad \Upsilon, \Theta, \Omega \in \pm\left[10^{-8}, \sqrt{4 \pi}\right] \\
m_{S_{1 / 2}^{\prime / 2}}^{2}=\left[\begin{array}{cc}
\mu_{S}^{2}+\frac{g_{H S} v^{2}}{2} & \frac{v a_{1}^{*}}{\sqrt{2}} \\
\frac{v a_{1}}{\sqrt{2}} & \mu_{R}^{2}+\frac{G v^{2}}{2}
\end{array}\right] \quad m_{S^{2 / 3}}^{2}=\mu_{R}^{2}+\frac{G v^{2}}{2} \quad G=\left(g_{H R}+g_{H R}^{\prime}\right)
\end{gathered}
$$

Obtain a total of 9 entries of the Θ and Ω inverting the neutrino mass form

$$
\left(M_{\nu}\right)_{i j}=\frac{3}{16 \pi^{2}\left(m_{S_{2}^{1 / 3}}^{2}-m_{S_{1}^{1 / 3}}^{2}\right)} \frac{v a_{1}}{\sqrt{2}} \ln \left(\frac{m_{S_{2}^{1 / 3}}^{2}}{m_{S_{1}^{1 / 3}}^{2}}\right) \sum_{m, a}\left(m_{d}\right)_{a} V_{a m}\left(\Theta_{i m} \Omega_{j a}+\Theta_{j m} \Omega_{i a}\right)
$$

- a) blue: $\chi^{2} /$ d. o.f. $=1.70, m_{S_{1}^{13}}=3.00 \mathrm{TeV}, m_{S_{2^{1 / 3}}}=6.95 \mathrm{TeV}, m_{S^{2 / 3}}=6.97 \mathrm{TeV}$
- b) cyan: $\chi^{2} /$ d.o.f. $=1.70, m_{S_{1}^{1 / 3}}=2.60 \mathrm{TeV}, m_{S_{2}^{13}}=4.65 \mathrm{TeV}, m_{S^{2 / 3}}=4.64 \mathrm{TeV}$
- c) red: $\chi^{2} /$ d.o.f. $=1.75, m_{S_{1}^{1 / 3}}=2.64 \mathrm{TeV}, m_{S_{2}^{1 / 3}}=4.13 \mathrm{TeV}, m_{S^{2 / 3}}=4.18 \mathrm{TeV}$

- Muon channel dominates the $R_{K, K^{*}}$ anomalies
- Strongly correlated with $B_{s} \rightarrow \mu \mu$

- We can simultaneously accommodate $R_{D, D^{*}}$ and $R_{K, K^{*}}^{\nu}$
- $R_{D^{*}}$ competes with $R_{K^{*}}^{\nu \nu}$

- We can simultaneously accommodate $R_{D, D^{*}}$ and $R_{K, K^{*}}^{\nu \nu}$
- $\Upsilon_{\mu t}$ controls the size of a_{μ}
- $R_{D^{*}}$ competes with $R_{K^{*}}^{\nu \nu}$

Preferred sizes to simultaneously address all anomalies in consistency with neutrino physics, LFV and LFC $Z \rightarrow \ell \ell$ decays

- Provides information to test the model at colliders
- E.g. t-channel single production: $\Theta_{\tau u} \sim 0.1 \rightarrow$ di-tau final state, $\Upsilon_{\ell u} \sim 0.1 \rightarrow$ electrons and muons in the final state

Concluding remarks

- Simple, economical, constrained and falsifiable model
- Well motivated by unification principles
- Can explain B-physics, a_{μ}, m_{ν} in consistency with LFV observables and LFC Z-boson decays: $\chi^{2} /$ d.o.f. $=1.70$
- Can also potentially address W-mass anomaly while slightly disfavoured: $\chi^{2} /$ d.o.f. $=1.75$
- Lightest LQ with mass in the range 1.5 to 6 TeV

